Chapter 6: Q13E (page 331)
In Exercises 13 and 14, the columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that \(A = QR\). Check your work.
13. \(A = \left( {\begin{aligned}{{}{}}5&9\\1&7\\{ - 3}&{ - 5}\\1&5\end{aligned}} \right),{\rm{ }}Q = \left( {\begin{aligned}{{}{}}{\frac{5}{6}}&{ - \frac{1}{6}}\\{\frac{1}{6}}&{\frac{5}{6}}\\{ - \frac{3}{6}}&{\frac{1}{6}}\\{\frac{1}{6}}&{\frac{3}{6}}\end{aligned}} \right)\)
Short Answer
The upper triangular matrix is \(R = \left( {\begin{aligned}{{}{}}6&{12}\\0&6\end{aligned}} \right)\).