Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the distance between \({\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{10}\\{ - 3}\end{aligned}} \right)\) and \({\mathop{\rm y}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\{ - 5}\end{aligned}} \right)\).

Short Answer

Expert verified

The distance between the vectors x and y is \({\mathop{\rm dist}\nolimits} \left( {{\mathop{\rm x}\nolimits} ,y} \right) = 5\sqrt 5 \).

Step by step solution

01

Distance in \({\mathbb{R}^n}\)

Thelength of the vector is thedistance between u and v in \({\mathbb{R}^n}\), expressed as \({\mathop{\rm dist}\nolimits} \left( {{\mathop{\rm u}\nolimits} ,v} \right)\). Therefore, \({\mathop{\rm dist}\nolimits} \left( {{\mathop{\rm u}\nolimits} ,v} \right) = \left\| {{\mathop{\rm u}\nolimits} - v} \right\|\).

02

Find the distance between the vectors

Compute \({\mathop{\rm x}\nolimits} - {\mathop{\rm y}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm x}\nolimits} - {\mathop{\rm y}\nolimits} &= \left( {\begin{aligned}{*{20}{c}}{10}\\{ - 3}\end{aligned}} \right) - \left( {\begin{aligned}{*{20}{c}}{ - 1}\\{ - 5}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{10 + 1}\\{ - 3 + 5}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{11}\\{ - 2}\end{aligned}} \right)\end{aligned}\)

Compute the distance between the vectors as shown below:

\(\begin{aligned}{c}{\mathop{\rm dist}\nolimits} \left( {{\mathop{\rm x}\nolimits} ,y} \right) &= \left\| {{\mathop{\rm x}\nolimits} - {\mathop{\rm y}\nolimits} } \right\|\\ &= \sqrt {{{\left( {11} \right)}^2} + {{\left( { - 2} \right)}^2}} \\ &= \sqrt {121 + 4} \\ &= \sqrt {125} \\ &= 5\sqrt 5 \end{aligned}\)

Thus, the distance between the vectors x and y is \({\mathop{\rm dist}\nolimits} \left( {{\mathop{\rm x}\nolimits} ,y} \right) = 5\sqrt 5 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find a \(QR\) factorization of the matrix in Exercise 11.

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

4. \(\left( {\begin{aligned}{{}{}}3\\{ - 4}\\5\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{ - 3}\\{14}\\{ - 7}\end{aligned}} \right)\)

In Exercises 5 and 6, describe all least squares solutions of the equation \(A{\bf{x}} = {\bf{b}}\).

6.\(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\end{aligned}} \right)\),\({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{7}}\\{\bf{2}}\\{\bf{3}}\\{\bf{6}}\\{\bf{5}}\\{\bf{4}}\end{aligned}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

8. \(\left\| {\mathop{\rm x}\nolimits} \right\|\)

For a matrix program, the Gram–Schmidt process worksbetter with orthonormal vectors. Starting with \({x_1},......,{x_p}\) asin Theorem 11, let \(A = \left\{ {{x_1},......,{x_p}} \right\}\) . Suppose \(Q\) is an\(n \times k\)matrix whose columns form an orthonormal basis for

the subspace \({W_k}\) spanned by the first \(k\) columns of A. Thenfor \(x\) in \({\mathbb{R}^n}\), \(Q{Q^T}x\) is the orthogonal projection of x onto \({W_k}\) (Theorem 10 in Section 6.3). If \({x_{k + 1}}\) is the next column of \(A\),then equation (2) in the proof of Theorem 11 becomes

\({v_{k + 1}} = {x_{k + 1}} - Q\left( {{Q^T}T {x_{k + 1}}} \right)\)

(The parentheses above reduce the number of arithmeticoperations.) Let \({u_{k + 1}} = \frac{{{v_{k + 1}}}}{{\left\| {{v_{k + 1}}} \right\|}}\). The new \(Q\) for thenext step is \(\left( {\begin{aligned}{{}{}}Q&{{u_{k + 1}}}\end{aligned}} \right)\). Use this procedure to compute the\(QR\)factorization of the matrix in Exercise 24. Write thekeystrokes or commands you use.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free