Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

12. \(\left( {\begin{aligned}{{}{}}1&3&5\\{ - 1}&{ - 3}&1\\0&2&3\\1&5&2\\1&5&8\end{aligned}} \right)\)

Short Answer

Expert verified

An orthogonal basis for the column space is \(\left\{ {\left( {\begin{aligned}{{}{}}1\\{ - 1}\\0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{ - 1}\\1\\2\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}3\\3\\0\\{ - 3}\\3\end{aligned}} \right)} \right\}\).

Step by step solution

01

The Gram-Schmidt process

With abasis\(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)for a nonzero subspace \(W\) of \({\mathbb{R}^n}\), the expressionis shown below:

\(\begin{aligned}{}{{\bf{v}}_1} & = {{\bf{x}}_1}\\{{\bf{v}}_2} & = {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_2}\\ \vdots \\{{\bf{v}}_p} & = \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_p} - \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_p} - \ldots - \frac{{{{\bf{x}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{{{\bf{v}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{\bf{v}}_{p - 1}}\end{aligned}\)

Therefore, theorthogonal basisfor \(W\) is \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\). Furthermore,

\({\mathop{\rm Span}\nolimits} \left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}} \right\} = {\mathop{\rm Span}\nolimits} \left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}} \right\}\) for \(1 \le k \le p\).

02

Determine an orthogonal basis for the column space

Consider the columns of the matrix as \({{\bf{x}}_1},{{\bf{x}}_2}\), and \({{\bf{x}}_3}\).

Apply the Gram-Schmidt process on these vectors to obtain an orthogonal basis as shown below:

\(\begin{aligned}{}{{\bf{v}}_1} & = {{\bf{x}}_1}\\{{\bf{v}}_2} & = {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1}\\ & = {{\bf{x}}_2} - \frac{{16}}{4}{{\bf{v}}_1}\\ & = {{\bf{x}}_2} - 4{{\bf{v}}_1}\\ & = \left( {\begin{aligned}{{}{}}3\\{ - 3}\\2\\5\\5\end{aligned}} \right) - 4\left( {\begin{aligned}{{}{}}1\\{ - 1}\\0\\1\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{3 - 4}\\{ - 3 + 4}\\{2 + 0}\\{5 - 4}\\{5 - 4}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{ - 1}\\1\\2\\1\\1\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{v}}_3} & = {{\bf{x}}_3} - \frac{{{{\bf{x}}_3} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} - \frac{{{{\bf{x}}_3} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2}\\ & = {{\bf{x}}_3} - \frac{{14}}{4}{{\bf{v}}_1} - \left( {\frac{{12}}{8}} \right){{\bf{v}}_2}\\ & = {{\bf{x}}_3} - \frac{7}{2}{{\bf{v}}_1} - \left( {\frac{3}{2}} \right){{\bf{v}}_2}\\ & = \left( {\begin{aligned}{{}{}}5\\1\\3\\2\\8\end{aligned}} \right) - \frac{7}{2}\left( {\begin{aligned}{{}{}}1\\{ - 1}\\0\\1\\1\end{aligned}} \right) - \frac{3}{2}\left( {\begin{aligned}{{}{}}{ - 1}\\1\\2\\1\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{5 - \frac{7}{2} + \frac{3}{2}}\\{1 + \frac{7}{2} - \frac{3}{2}}\\{3 + 0 - 3}\\{2 - \frac{7}{2} - \frac{3}{2}}\\{8 - \frac{7}{2} - \frac{3}{2}}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}3\\3\\0\\{ - 3}\\3\end{aligned}} \right)\end{aligned}\)

Hence, an orthogonal basis for the column space is \(\left\{ {\left( {\begin{aligned}{{}{}}1\\{ - 1}\\0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{ - 1}\\1\\2\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}3\\3\\0\\{ - 3}\\3\end{aligned}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}1\\{ - 2}\\1\end{align}} \right]\), \(\left[ {\begin{align}0\\1\\2\end{align}} \right]\), \(\left[ {\begin{align}{ - 5}\\{ - 2}\\1\end{align}} \right]\)

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\)may be written in the form

\(\begin{aligned}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

16. Use a matrix inverse to solve the system of equations in (7) and thereby obtain formulas for \({\hat \beta _0}\) , and that appear in many statistics texts.

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gramโ€“Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

In Exercises 9-12, find a unit vector in the direction of the given vector.

12. \(\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free