Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-12, find a unit vector in the direction of the given vector.

11. \(\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\)

Short Answer

Expert verified

The unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\sqrt {69} }}}\\{\frac{2}{{\sqrt {69} }}}\\{\frac{4}{{\sqrt {69} }}}\end{aligned}} \right)\).

Step by step solution

01

Definition of a unit vector

Aunit vectoris a vector with a length of 1. When dividing a nonzero vector v by its length, namely, multiply by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\), we get a unit vector u since \(\left( {\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}} \right)\left\| {\mathop{\rm v}\nolimits} \right\|\) is the length of u. The process of producing u from v is known as thenormalizingv, and we describe that u is in the same direction as v.

02

Determine the unit vector in the direction

It is given that \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\).

Compute the length of \({\mathop{\rm v}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left\| {\mathop{\rm v}\nolimits} \right\| &= \sqrt {{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \\ &= \sqrt {{{\left( {\frac{7}{4}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( 1 \right)}^2}} \\ &= \sqrt {\left( {\frac{{49}}{{16}}} \right) + \left( {\frac{1}{4}} \right) + 1} \\ &= \sqrt {\frac{{49 + 4 + 16}}{{16}}} \\ &= \sqrt {\frac{{69}}{{16}}} \end{aligned}\)

Multiply v by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\) to obtain the unit vector \({\mathop{\rm u}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm u}\nolimits} &= \frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}{\mathop{\rm v}\nolimits} \\ &= \frac{1}{{\sqrt {\frac{{69}}{{16}}} }}\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\frac{{4\sqrt {69} }}{4}}}}\\{\frac{1}{{\frac{{2\sqrt {69} }}{4}}}}\\{\frac{1}{{\frac{{\sqrt {69} }}{4}}}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\sqrt {69} }}}\\{\frac{2}{{\sqrt {69} }}}\\{\frac{4}{{\sqrt {69} }}}\end{aligned}} \right)\end{aligned}\)

Thus, the unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\sqrt {69} }}}\\{\frac{2}{{\sqrt {69} }}}\\{\frac{4}{{\sqrt {69} }}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find a \(QR\) factorization of the matrix in Exercise 11.

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\)may be written in the form

\(\begin{aligned}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

16. Use a matrix inverse to solve the system of equations in (7) and thereby obtain formulas for \({\hat \beta _0}\) , and that appear in many statistics texts.

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

8.\[y = \left[ {\begin{aligned}{ - 1}\\4\\3\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\{\bf{1}}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\3\\{ - 2}\end{aligned}} \right]\]

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free