Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

According to Kepler’s first law, a comet should have an elliptic, parabolic, or hyperbolic orbit (with gravitational attractions from the planets ignored). In suitable polar coordinates, the position \(\left( {r,\vartheta } \right)\) of a comet satisfies an equation of the form

\(r = \beta + e\left( {r \cdot \cos \vartheta } \right)\)

Where \(\beta \) is a constant and \(e\) is the eccentricity of the orbit, with \(0 \le e < 1\) for an ellipse, \(e = 1\) for a parabola, and \(e > 1\) for a hyperbola. Suppose observations of a newly discovered comet provide the data below. Determine the type of orbit, and predict where the comet will be when \(\vartheta = 4.6\left( {{\rm{radians}}} \right)\).

\(\begin{array}{{}{}} \vartheta & & {.88}&{1.10}&{1.42}&{1.77}&{2.14} \\ \hline r& {3.00}&{2.30}&{1.65}&{1.25}&{1.01} \end{array}\)

Short Answer

Expert verified

The orbit of the comet is elliptical and \(r = 1.33\).

Step by step solution

01

The General Linear Model

The equation of the general linear model is defined as:

\({\bf{y}} = X\beta + \in \)

Here, \({\bf{y}} = \left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\\ \vdots \\{{y_n}}\end{aligned}} \right)\) is an observational vector, \(X = \left( {\begin{aligned}{{}}1&{{x_1}}& \cdots &{x_1^n}\\1&{{x_2}}& \cdots &{x_2^n}\\ \vdots & \vdots & \ddots & \vdots \\1&{{x_n}}& \cdots &{x_n^n}\end{aligned}} \right)\) is the design matrix, \(\beta = \left( {\begin{aligned}{{}}{{\beta _1}}\\{{\beta _2}}\\ \vdots \\{{\beta _n}}\end{aligned}} \right)\) is parameter vector, and \( \in = \left( {\begin{aligned}{{}}{{ \in _1}}\\{{ \in _2}}\\ \vdots \\{{ \in _n}}\end{aligned}} \right)\) is a residual vector.

02

Find design matrix, observation vector, parameter vector for given data

The given equation is\(r = \beta + e\left( {r \cdot \cos \vartheta } \right)\), and the given table is shown as:

\(\begin{array}{{}{}}\vartheta & & {.88}&{1.10}&{1.42}&{1.77}&{2.14} \\ \hline r& & {3.00}&{2.30}&{1.65}&{1.25}&{1.01} \end{array}\)

Write the Design matrix, observational vector, and the parameter vector for the given equation and data set using the information provided in step 1.

Design matrix:

\(X = \left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)\)

Observational vector:

\({\bf{y}} = \left( {\begin{aligned}{{}}3\\{2.3}\\{1.65}\\{1.25}\\{1.01}\end{aligned}} \right)\)

And the parameter vectorfor the given equation is,

\({\bf{\beta }} = \left( {\begin{aligned}{{}}\beta \\e\end{aligned}} \right)\)

These are the best fit for the given data set and equation.

03

Normal equation

The normal equation is given by,

\({X^T}X\beta = {X^T}{\bf{y}}\)

04

Find the least-squares curve

The general least-squares equation is given by \(r = \beta + e\left( {r \cdot \cos \vartheta } \right)\), and to find the associated least-squares curve, the values of \(\beta ,e\) are required, so find the values of \(\beta ,e\) by using normal equation.

By using the obtained information from step 2, the normal equation will be,

\(\beta = {\left( {{X^T}X} \right)^{ - 1}}{X^T}{\bf{y}}\)

That implies:

\(\left( {\begin{aligned}{{}}\beta \\e\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)^T}\left( {\begin{aligned}{{}}3\\{2.3}\\{1.65}\\{1.25}\\{1.01}\end{aligned}} \right)\)

Use the following steps to find the associated values for the obtained data in MATLAB.

  1. Enter the data \(\left( {\begin{aligned}{{}}\beta \\e\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)^T}\left( {\begin{aligned}{{}}3\\{2.3}\\{1.65}\\{1.25}\\{1.01}\end{aligned}} \right)\) in the tab in the form of \({\left( {{{\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{}}1&{3\cos .88}\\1&{2.3\cos 1.1}\\1&{1.65\cos 1.42}\\1&{1.25\cos 1.77}\\1&{1.01\cos 2.14}\end{aligned}} \right)^T}\left( {\begin{aligned}{{}}3\\{2.3}\\{1.65}\\{1.25}\\{1.01}\end{aligned}} \right)\).
  2. Use colons after that and press ENTER.

So, the value of \(\left( {\begin{aligned}{{}}\beta \\e\end{aligned}} \right)\) is \(\left( {\begin{aligned}{{}}{1.45}\\{0.811}\end{aligned}} \right)\).

As, \(e = 0.811\) which is less than 1, so the orbit is of elliptical form.

Now, substitute the obtained values into \(r = \beta + e\left( {r \cdot \cos \vartheta } \right)\).

\(r = 1.45 + 0.811\left( {r \cdot \cos \vartheta } \right)\)

For \(\vartheta = 4.6\), \(r = 1.33\).

So, the required valueof\(r\) is \(1.33\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

3.\[y = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{4}}\\{\bf{3}}\end{aligned}} \right]\],\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\)

Show that if an \(n \times n\) matrix satisfies \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) for all x and y in \({\mathbb{R}^n}\), then \(U\) is an orthogonal matrix.

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[y\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6.\[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

a. If \(W = {\rm{span}}\left\{ {{x_1},{x_2},{x_3}} \right\}\) with \({x_1},{x_2},{x_3}\) linearly independent,

and if \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is an orthogonal set in \(W\) , then \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for \(W\) .

b. If \(x\) is not in a subspace \(W\) , then \(x - {\rm{pro}}{{\rm{j}}_W}x\) is not zero.

c. In a \(QR\) factorization, say \(A = QR\) (when \(A\) has linearly

independent columns), the columns of \(Q\) form an

orthonormal basis for the column space of \(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free