Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

10. \(A = \left[ {\begin{aligned}{{}{}}{\bf{1}}&{\bf{2}}\\{ - {\bf{1}}}&{\bf{4}}\\{\bf{1}}&{\bf{2}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{3}}\\{ - {\bf{1}}}\\{\bf{5}}\end{aligned}} \right]\)

Short Answer

Expert verified
  1. The orthogonal projection of bonto Col A is \(\left[ {\begin{aligned}{{}{}}4\\{ - 1}\\4\end{aligned}} \right]\).
  2. The least-square solution is \(\left[ {\begin{aligned}{{}{}}3\\{\frac{1}{2}}\end{aligned}} \right]\).

Step by step solution

01

Find the orthogonal projection of \({\bf{\hat b}}\)

The orthogonal projection of b onto \({\rm{Col}}A\) is:

\(\begin{aligned}{}{\bf{\hat b}} &= {\rm{pro}}{{\rm{j}}_{{\rm{col}}A}}{\bf{b}}\\ & = \frac{{{\bf{b}} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} + \frac{{{\bf{b}} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2}\\ & = \frac{{\left[ {\begin{aligned}{{}{}}3&{ - 1}&5\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}1\\{ - 1}\\1\end{aligned}} \right]}}{{\left[ {\begin{aligned}{{}{}}1&{ - 1}&1\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}1\\{ - 1}\\1\end{aligned}} \right]}}{{\bf{v}}_1} + \frac{{\left[ {\begin{aligned}{{}{}}3&{ - 1}&5\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}2\\4\\2\end{aligned}} \right]}}{{\left[ {\begin{aligned}{{}{}}2&4&2\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}2\\4\\2\end{aligned}} \right]}}{{\bf{v}}_2}\\ & = \frac{9}{3}\left[ {\begin{aligned}{{}{}}1\\{ - 1}\\1\end{aligned}} \right] + \frac{{12}}{{24}}\left[ {\begin{aligned}{{}{}}2\\4\\2\end{aligned}} \right]\end{aligned}\)

Solve further,

\(\begin{aligned}{}{\bf{\hat b}} & = \left[ {\begin{aligned}{{}{}}{3 + 1}\\{ - 3 + 2}\\{3 + 1}\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}4\\{ - 1}\\4\end{aligned}} \right]\end{aligned}\)

The orthogonal projection of b onto ColA is \(\left[ {\begin{aligned}{{}{}}4\\{ - 1}\\4\end{aligned}} \right]\).

02

Find the normal equation

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A = \left[ {\begin{aligned}{{}{}}1&{ - 1}&1\\2&4&2\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}1&2\\{ - 1}&4\\1&2\end{aligned}} \right]\\ = \left[ {\begin{aligned}{{}{}}3&0\\0&{24}\end{aligned}} \right]\end{aligned}\)

Find the product \({A^T}{\bf{b}}\).

\(\begin{aligned}{}{A^T}{\bf{b}} = \left[ {\begin{aligned}{{}{}}1&{ - 1}&1\\2&4&2\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}3\\{ - 1}\\5\end{aligned}} \right]\\ = \left[ {\begin{aligned}{{}{}}9\\{12}\end{aligned}} \right]\end{aligned}\)

The normal equation can be written as:

\(\begin{aligned}{}\left( {{A^T}A} \right){\bf{x}} = {A^T}{\bf{b}}\\\left[ {\begin{aligned}{{}{}}3&0\\0&{24}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right] = \left[ {\begin{aligned}{{}{}}9\\{12}\end{aligned}} \right]\end{aligned}\)

03

Find the least square solution

The least-square solution can be calculated as follows:

\(\begin{aligned}{}{\bf{\hat x}} & = {\left( {{A^T}A} \right)^{ - 1}}{A^T}{\bf{b}}\\ & = {\left[ {\begin{aligned}{{}{}}3&0\\0&{24}\end{aligned}} \right]^{ - 1}}\left[ {\begin{aligned}{{}{}}9\\{12}\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}{\frac{1}{3}}&0\\0&{\frac{1}{{24}}}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}9\\{12}\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}3\\{\frac{1}{2}}\end{aligned}} \right]\end{aligned}\)

Thus, the least square solution is \(\left[ {\begin{aligned}{{}{}}3\\{\frac{1}{2}}\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A healthy child’s systolic blood pressure (in millimetres of mercury) and weight (in pounds) are approximately related by the equation

\({\beta _0} + {\beta _1}\ln w = p\)

Use the following experimental data to estimate the systolic blood pressure of healthy child weighing 100 pounds.

\(\begin{array} w&\\ & {44}&{61}&{81}&{113}&{131} \\ \hline {\ln w}&\\vline & {3.78}&{4.11}&{4.39}&{4.73}&{4.88} \\ \hline p&\\vline & {91}&{98}&{103}&{110}&{112} \end{array}\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

For a matrix program, the Gram–Schmidt process worksbetter with orthonormal vectors. Starting with \({x_1},......,{x_p}\) asin Theorem 11, let \(A = \left\{ {{x_1},......,{x_p}} \right\}\) . Suppose \(Q\) is an\(n \times k\)matrix whose columns form an orthonormal basis for

the subspace \({W_k}\) spanned by the first \(k\) columns of A. Thenfor \(x\) in \({\mathbb{R}^n}\), \(Q{Q^T}x\) is the orthogonal projection of x onto \({W_k}\) (Theorem 10 in Section 6.3). If \({x_{k + 1}}\) is the next column of \(A\),then equation (2) in the proof of Theorem 11 becomes

\({v_{k + 1}} = {x_{k + 1}} - Q\left( {{Q^T}T {x_{k + 1}}} \right)\)

(The parentheses above reduce the number of arithmeticoperations.) Let \({u_{k + 1}} = \frac{{{v_{k + 1}}}}{{\left\| {{v_{k + 1}}} \right\|}}\). The new \(Q\) for thenext step is \(\left( {\begin{aligned}{{}{}}Q&{{u_{k + 1}}}\end{aligned}} \right)\). Use this procedure to compute the\(QR\)factorization of the matrix in Exercise 24. Write thekeystrokes or commands you use.

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\1\\{ - 3}\\8\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\3\\5\\{ - 1}\end{array}} \right]\)

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free