Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5-14, the space is \(C\left[ {0,2\pi } \right]\) with inner product (6).

7. Show that \({\left\| {\cos kt} \right\|^2} = \pi \) and \({\left\| {\sin kt} \right\|^2} = \pi \) for \(k > 0\).

Short Answer

Expert verified

It is proved that\({\left\| {\cos kt} \right\|^2} = \pi {\rm{ and }}{\left\| {\sin kt} \right\|^2} = \pi ,\,\,\,\forall k > 0\).

Step by step solution

01

Inner Product

The Inner Productfor any two arbitrary functions is given by:

\(\left\langle {f,g} \right\rangle = \int_0^{2\pi } {f\left( t \right)g\left( t \right)dt} \)

02

Proving the statement

It is given that,\(k \in + {\rm I}\).

Using theinner productrule, we have:

\(\begin{array}{c}{\left\| {\cos kt} \right\|^2} = \int_0^{2\pi } {{{\cos }^2}ktdt} \\ = \frac{1}{2}\int_0^{2\pi } {\left\{ {1 + \cos 2kt} \right\}dt} \\ = \pi \end{array}\)

Similarly,

\(\begin{array}{c}{\left\| {\sin kt} \right\|^2} = \int_0^{2\pi } {{{\sin }^2}ktdt} \\ = \frac{1}{2}\int_0^{2\pi } {\left\{ {1 - \cos 2kt} \right\}dt} \\ = \pi \end{array}\)

Hence, \({\left\| {\cos kt} \right\|^2} = \pi {\rm{ and }}{\left\| {\sin kt} \right\|^2} = \pi ,\,\,\,\forall k > 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

1. \(A = \left[ {\begin{aligned}{{}{}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{1}}}&{\bf{3}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{4}}\\{\bf{1}}\\{\bf{2}}\end{aligned}} \right]\)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

6. \(\left( {\begin{aligned}{{}}3\\{ - 1}\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 5}\\9\\{ - 9}\\3\end{aligned}} \right)\)

In Exercises 9-12, find a unit vector in the direction of the given vector.

12. \(\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\)

Use the Gram–Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

\(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\)

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\)may be written in the form

\(\begin{aligned}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

16. Use a matrix inverse to solve the system of equations in (7) and thereby obtain formulas for \({\hat \beta _0}\) , and that appear in many statistics texts.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free