Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 17–20, solve \(Ax = b\) and \(A\left( {\Delta x} \right) = \Delta b\) and show that the inequality (2) holds in each case. (See the discussion of ill-conditioned matrices in Exercises 41–43 in Section 2.3.)

\(17.\,\,A = \left[ {\begin{array}{*{20}{c}}{4.5}&{3.1}\\{1.6}&{1.1}\end{array}} \right],\,\,b = \left[ {\begin{array}{*{20}{c}}{19.249}\\{6.843}\end{array}} \right],\,\,\,\Delta b = \left[ {\begin{array}{*{20}{c}}{0.001}\\{ - 0.003}\end{array}} \right]\)

Short Answer

Expert verified

Thus, the required condition \[\frac{{\parallel \Delta x\parallel }}{{\parallel x\parallel }} \le cond(A) \cdot \frac{{\parallel \Delta b\parallel }}{{\parallel b\parallel }}\] is satisfied.

Step by step solution

01

The condition for solving matrix

Enter the matrices in MATLAB

\(\begin{array}{c}A = \left[ {4.5{\rm{ }}3.1{\rm{ }};{\rm{ }}1.6{\rm{ }}1.1} \right]\\b = \left[ {19.249;{\rm{ }}6.843} \right]\\delta\,\,b = \left[ {0.001; - 0.003} \right]\end{array}\)

02

Solve the equation matrix

Solve the system of equation

\(\)

\(\begin{array}{c}Ax = b\\x = {A^{ - 1}}b\\x{\rm{ }} = \left[ {3.94,\,\,0.49} \right]\end{array}\)

Solve the system of equation

\(\begin{array}{c}A\left( {delta\,\,x} \right) = delta\,\,b\\delta\,\,x = {A^{ - 1}}\left( {delta\,\,b} \right)\\delta\,\,x = \left[ { - 1.04,\,\,1.51} \right]\end{array}\)

03

Find norm and condition number

\(\begin{array}{l}norm\left( {delta\,\,x} \right)/norm\left( x \right)\\ans{\rm{ }} = 0.4618\\norm\left( {delta\,\,b} \right)/norm\left( b \right)\\ans{\rm{ }} = 1.5479e - 04\end{array}\)

\(\begin{array}{l}ans{\rm{ }} = \\1.5479e - 04\\Condition{\rm{ }}Number{\rm{ }}of{\rm{ }}A:\\cond\left( A \right)\\\end{array}\)

Condition Number of A:

\(\begin{array}{l}Cond\left( A \right)\\ans{\rm{ }} = 3.3630e + 03\end{array}\)

04

Find ratio condition 

Compute the ratio condition

\(\begin{array}{l}(A) \cdot \frac{{\parallel \Delta b\parallel }}{{\parallel b\parallel }}\\cond\left( A \right)*{\rm{ }}norm\left( {deltab} \right)/norm\left( b \right)\\ans{\rm{ }} = 0.5206\end{array}\)

So, the condition satisfied,\(\frac{{\parallel \Delta x\parallel }}{{\parallel x\parallel }} \le cond(A) \cdot \frac{{\parallel \Delta b\parallel }}{{\parallel b\parallel }}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 1 and 2, you may assume that\(\left\{ {{{\bf{u}}_{\bf{1}}},...,{{\bf{u}}_{\bf{4}}}} \right\}\)is an orthogonal basis for\({\mathbb{R}^{\bf{4}}}\).

2.\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{3}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{4}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({\bf{x}} = \left[ {\begin{aligned}{\bf{4}}\\{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right]\)

Write v as the sum of two vectors, one in\({\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\)and the other in\({\bf{Span}}\left\{ {{{\bf{u}}_2},{{\bf{u}}_3},{{\bf{u}}_{\bf{4}}}} \right\}\).

In Exercises 9-12, find a unit vector in the direction of the given vector.

10. \(\left( {\begin{aligned}{*{20}{c}}{ - 6}\\4\\{ - 3}\end{aligned}} \right)\)

In Exercises 13 and 14, the columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that \(A = QR\). Check your work.

13. \(A = \left( {\begin{aligned}{{}{}}5&9\\1&7\\{ - 3}&{ - 5}\\1&5\end{aligned}} \right),{\rm{ }}Q = \left( {\begin{aligned}{{}{}}{\frac{5}{6}}&{ - \frac{1}{6}}\\{\frac{1}{6}}&{\frac{5}{6}}\\{ - \frac{3}{6}}&{\frac{1}{6}}\\{\frac{1}{6}}&{\frac{3}{6}}\end{aligned}} \right)\)

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1, and let \({\bf{x}} = \left( {{\bf{1}},{\bf{1}}} \right)\) and \({\bf{y}} = \left( {{\bf{5}}, - {\bf{1}}} \right)\).

a. Find\(\left\| {\bf{x}} \right\|\),\(\left\| {\bf{y}} \right\|\), and\({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).

b. Describe all vectors\(\left( {{z_{\bf{1}}},{z_{\bf{2}}}} \right)\), that are orthogonal to y.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free