Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7–10, letWbe the subspace spanned by theu’s, and write y as the sum of a vector inWand a vector orthogonal toW.

9.y=[4331],u1=[1101],u2=[1312],u2=[1011]

Short Answer

Expert verified

The vectoryis the sum of the vectors inWasy^+z=[2400]+[2131].

A vector orthogonal to W is [2131].

Step by step solution

01

Write the definition

Orthogonal set: Ifuiuj=0forij, then the set of vectors{u1,,up}Rnis said to be orthogonal.

02

Check the set of given vectors is orthogonal or not

Given vectors are,u1=[1101],u2=[1312]andu3=[1011].

Findu1u2,u2u3andu1u3.

u1u2=[1101][1312]=1(1)+1(3)+0(1)+1(2)=0

u2u3=[1312][1011]=1(1)+3(0)+1(1)+(2)1=0

u1u3=[1101][1011]=1(1)+1(0)+0(1)+1(1)=0

As u1u2=0, u2u3=0 and u1u3=0, so the set of vectors {u1,u2,u3} is orthogonal.

03

The Orthogonal Decomposition Theorem

If {u1,,up} is any orthogonal basis of w, then y^=yu1u1u1u1++yupupupup, where w is a subspace of Rn and y^w, for which every y can be written as y=y^+z when zw.

04

Find the Orthogonal projection of y onto Span {u1,u2,u3}

Findyu1,yu2,yu3,u1u1,u2u2, andu3u3first, wherey=[4331].

cyu1=[4331][1101]=4(1)+3(1)+3(0)+(1)1=6

yu2=[4331][1312]=4(1)+3(3)+3(1)+(1)(2)=10

yu3=[4331][1011]=4(1)+3(0)+3(1)+(1)1=2

u1u1=[1101][1101]=1(1)+(1)(1)+0(0)+(1)(1)=3

u2u2=[1312][1312]=1(1)+(3)(3)+1(1)+(2)(2)=15

u3u3=[1011][1011]=1(1)+(0)(0)+1(1)+(1)(1)=3

Now, find the projection ofyonto Span{u1,u2,u3}by substituting the obtained values intoy^=yu1u1u1u1++yupupupup.

y^=63u1+1015u223u3=2[1101]+23[1312][1011]=[2400]

Hence, y^=[2400].

05

Find a vector orthogonal to W

Findz, which is orthogonal toWby usingz=yy^.

z=yy^=[4331][2400]=[2131]

So,z=[2131].

06

Write y as a sum of a vector in W

Writey=y^+z, wherey^wandzw.

y=y^+z=[2400]+[2131]

Hence,yas the sum of a vector inWisy^+z=[2400]+[2131].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free