Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

7.\[y = \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\]

Short Answer

Expert verified

The vector\[{\bf{y}}\]is the sum of the vector in\[W\]as\[{\bf{\hat y}} + {\bf{z}} = \left[ {\begin{aligned}{\frac{{10}}{3}}\\{\frac{2}{3}}\\{\frac{8}{3}}\end{aligned}} \right] + \left[ {\begin{aligned}{ - \frac{7}{3}}\\{\frac{7}{3}}\\{\frac{7}{3}}\end{aligned}} \right]\].

A vector orthogonal to\[W\]is\[\left[ {\begin{aligned}{ - \frac{7}{3}}\\{\frac{7}{3}}\\{\frac{7}{3}}\end{aligned}} \right]\].

Step by step solution

01

Write the definition

Orthogonal set: If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check the set of given vectors is orthogonal or not

Given vectors are\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\]and\[{{\bf{u}}_2} = \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\].

Find the product\[{{\bf{u}}_1} \cdot {{\bf{u}}_2}\].

\[\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right] \cdot \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\\ &= 1\left( 5 \right) + \left( 3 \right)\left( 1 \right) + \left( { - 2} \right)\left( 4 \right)\\ &= 0\end{aligned}\]

As \[{{\bf{u}}_1} \cdot {{\bf{u}}_2} = 0\], so the set of vectors \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is orthogonal.

03

The Orthogonal Decomposition Theorem

If \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\}\] is any orthogonal basis of \[w\], then \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\], where \[w\] is a subspace of \[{\mathbb{R}^n}\] and \[{\bf{\hat y}} \in w\], for which each \[{\bf{y}}\] can be written as \[{\bf{y}} = {\bf{\hat y}} + {\bf{z}}\] when \[{\bf{z}} \in {w^ \bot }\].

04

Find the Orthogonal projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]

Find \[{\bf{y}} \cdot {{\bf{u}}_1}\], \[{\bf{y}} \cdot {{\bf{u}}_2}\], \[{{\bf{u}}_1} \cdot {{\bf{u}}_1}\] and \[{{\bf{u}}_2} \cdot {{\bf{u}}_2}\] first, where \[{\bf{y}} = \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right]\].

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right] \cdot \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\\ &= \left( 1 \right)\left( 1 \right) + 3\left( 3 \right) + 5\left( { - 2} \right)\\ &= 0\end{aligned}\]

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right] \cdot \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\\ &= \left( 1 \right)5 + 3\left( 1 \right) + 5\left( 4 \right)\\ &= 28\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right] \cdot \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\\ &= 1\left( 1 \right) + \left( 3 \right)\left( 3 \right) + \left( { - 2} \right)\left( { - 2} \right)\\ &= 14\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_2} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right] \cdot \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\\ &= 5\left( 5 \right) + \left( 1 \right)\left( 1 \right) + \left( 4 \right)\left( 4 \right)\\ &= 42\end{aligned}\]

Now, find the projection of\[{\bf{y}}\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]by substituting the obtained values into\[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\].

\[\begin{aligned}{\bf{\hat y}} &= \frac{0}{{14}}{{\bf{u}}_1} + \frac{{28}}{{42}}{{\bf{u}}_2}\\ &= 0 + \frac{2}{3}\left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{\frac{{10}}{3}}\\{\frac{2}{3}}\\{\frac{8}{3}}\end{aligned}} \right]\end{aligned}\]

Hence, \[{\bf{\hat y}} = \left[ {\begin{aligned}{\frac{{10}}{3}}\\{\frac{2}{3}}\\{\frac{8}{3}}\end{aligned}} \right]\].

05

Find a vector orthogonal to \[W\]

Find\[{\bf{z}}\], which is orthogonal to\[W\]by using\[{\bf{z}} = {\bf{y}} - {\bf{\hat y}}\].

\[\begin{aligned}{\bf{z}} = {\bf{y}} - {\bf{\hat y}}\\ &= \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right] - \left[ {\begin{aligned}{\frac{{10}}{3}}\\{\frac{2}{3}}\\{\frac{8}{3}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{ - \frac{7}{3}}\\{\frac{7}{3}}\\{\frac{7}{3}}\end{aligned}} \right]\end{aligned}\]

So, \[{\bf{z}} = \left[ {\begin{aligned}{ - \frac{7}{3}}\\{\frac{7}{3}}\\{\frac{7}{3}}\end{aligned}} \right]\].

06

Write \[y\] as a sum of a vector in \[W\]

Write\[{\bf{y}} = {\bf{\hat y}} + {\bf{z}}\], where\[{\bf{\hat y}} \in w\]and\[{\bf{z}} \in {w^ \bot }\].

\[\begin{aligned}{c}{\bf{y}} = {\bf{\hat y}} + {\bf{z}}\\ = \left[ {\begin{aligned}{\frac{{10}}{3}}\\{\frac{2}{3}}\\{\frac{8}{3}}\end{aligned}} \right] + \left[ {\begin{aligned}{ - \frac{7}{3}}\\{\frac{7}{3}}\\{\frac{7}{3}}\end{aligned}} \right]\end{aligned}\]

Hence, \[{\bf{y}}\] as the sum of a vector in \[W\] is \[{\bf{\hat y}} + {\bf{z}} = \left[ {\begin{aligned}{\frac{{10}}{3}}\\{\frac{2}{3}}\\{\frac{8}{3}}\end{aligned}} \right] + \left[ {\begin{aligned}{ - \frac{7}{3}}\\{\frac{7}{3}}\\{\frac{7}{3}}\end{aligned}} \right]\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let u and v be linearly independent vectors in \({\mathbb{R}^n}\) that are not orthogonal. Describe how to find the best approximation to z in \({\mathbb{R}^n}\) by vectors of the form \({{\bf{x}}_1}{\mathop{\rm u}\nolimits} + {{\bf{x}}_2}{\mathop{\rm u}\nolimits} \) without first constructing an orthogonal basis for \({\mathop{\rm Span}\nolimits} \left\{ {{\bf{u}},{\bf{v}}} \right\}\).

In Exercises 5-14, the space is \(C\left[ {0,2\pi } \right]\) with inner product (6).

7. Show that \({\left\| {\cos kt} \right\|^2} = \pi \) and \({\left\| {\sin kt} \right\|^2} = \pi \) for \(k > 0\).

In exercises 1-6, determine which sets of vectors are orthogonal.

  1. \(\left[ {\begin{array}{*{20}{c}}{ - 1}\\4\\{ - 3}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}5\\2\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\{ - 4}\\{ - 7}\end{array}} \right]\)

Suppose the x-coordinates of the data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\) are in mean deviation form, so that \(\sum {{x_i}} = 0\). Show that if \(X\) is the design matrix for the least-squares line in this case, then \({X^T}X\) is a diagonal matrix.

In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

10. \(A = \left[ {\begin{aligned}{{}{}}{\bf{1}}&{\bf{2}}\\{ - {\bf{1}}}&{\bf{4}}\\{\bf{1}}&{\bf{2}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{3}}\\{ - {\bf{1}}}\\{\bf{5}}\end{aligned}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free