Chapter 6: 7E (page 331)
In exercises 7-10, show that {u1, u2} or {u1,u2,u3} is an orthogonal basis for \({\mathbb{R}^2}\) or \({\mathbb{R}^3}\), respectively. Then express x as a linear combination of the u.
7. \[{u_1} = \left[ {\begin{align}2\\{ - 3}\end{align}} \right]\], \[{u_2} = \left[ {\begin{align}6\\4\end{align}} \right]\], and \[x = \left[ {\begin{align}9\\{ - 7}\end{align}} \right]\]
Short Answer
The required linear combination is, \[x = 3{u_1} + \frac{1}{2}{u_2}\].