Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[y\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6.\[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

Short Answer

Expert verified

The projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is \[\left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\].

Step by step solution

01

Write the definition

Orthogonal set: If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check the set of given vectors is orthogonal or not

Given vectors are,\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\]and\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\].

Find the product\[{{\bf{u}}_1} \cdot {{\bf{u}}_2}\]as:

\[\begin{aligned}{c}{{\bf{u}}_1} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= - 4\left( 0 \right) + \left( { - 1} \right)\left( 1 \right) + 1\left( 1 \right)\\ &= 0\end{aligned}\]

As \[{{\bf{u}}_1} \cdot {{\bf{u}}_2} = 0\], so the set of vectors \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is orthogonal.

03

The Orthogonal Decomposition Theorem

If \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\}\] is any orthogonal basis of \[w\], then \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\], where \[w\] is a subspace of \[{\mathbb{R}^n}\] and \[{\bf{\hat y}} \in w\], for which each \[{\bf{y}}\] can be written as \[{\bf{y}} = {\bf{\hat y}} + {\bf{z}}\] when \[{\bf{z}} \in {w^ \bot }\].

04

Find the Orthogonal projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]

Find \[{\bf{y}} \cdot {{\bf{u}}_1}\], \[{\bf{y}} \cdot {{\bf{u}}_2}\], \[{{\bf{u}}_1} \cdot {{\bf{u}}_1}\] and \[{{\bf{u}}_2} \cdot {{\bf{u}}_2}\] first, where \[{\bf{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\].

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\\ &= \left( 6 \right)\left( { - 4} \right) + 4\left( { - 1} \right) + 1\left( 1 \right)\\ &= - 27\end{aligned}\]

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= \left( 6 \right)0 + 4\left( 1 \right) + 1\left( 1 \right)\\ &= 5\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\\ &= - 4\left( { - 4} \right) + \left( { - 1} \right)\left( { - 1} \right) + 1\left( 1 \right)\\ &= 18\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_2} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= 0\left( 0 \right) + \left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\\ &= 2\end{aligned}\]

Now, find the projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] by substituting the obtained values into \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\].

\[\begin{aligned}{\bf{\hat y}} &= - \frac{{27}}{{18}}{{\bf{u}}_1} + \frac{5}{2}{{\bf{u}}_2}\\ &= - \frac{3}{2}\left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right] + \frac{5}{2}\left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\\ &= \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\end{aligned}\]

Hence, the projection of \[{\bf{y}}\] onto Span \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is \[\left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gram–Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

A Householder matrix, or an elementary reflector, has the form \(Q = I - 2{\bf{u}}{{\bf{u}}^T}\) where u is a unit vector. (See Exercise 13 in the Supplementary Exercise for Chapter 2.) Show that Q is an orthogonal matrix. (Elementary reflectors are often used in computer programs to produce a QR factorization of a matrix A. If A has linearly independent columns, then left-multiplication by a sequence of elementary reflectors can produce an upper triangular matrix.)

Suppose \(A = QR\), where \(Q\) is \(m \times n\) and R is \(n \times n\). Showthat if the columns of \(A\) are linearly independent, then \(R\) mustbe invertible.

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

a. If \(W = {\rm{span}}\left\{ {{x_1},{x_2},{x_3}} \right\}\) with \({x_1},{x_2},{x_3}\) linearly independent,

and if \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is an orthogonal set in \(W\) , then \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for \(W\) .

b. If \(x\) is not in a subspace \(W\) , then \(x - {\rm{pro}}{{\rm{j}}_W}x\) is not zero.

c. In a \(QR\) factorization, say \(A = QR\) (when \(A\) has linearly

independent columns), the columns of \(Q\) form an

orthonormal basis for the column space of \(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free