Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\1\\{ - 3}\\8\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\3\\5\\{ - 1}\end{array}} \right]\)

Short Answer

Expert verified

The given set is orthogonal.

Step by step solution

01

Definition of an orthogonal set

If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check for orthogonality of vectors

Let the given vectors be, \({u_1} = \left[ {\begin{align}{ 5}\\{-4}\\{ 0}\\3\end{align}} \right]\), \({u_2} = \left[ {\begin{align}{ - 4}\\1\\{ - 3}\\8\end{align}} \right]\) and \({u_3} = \left[ {\begin{align}3\\3\\5\\{ - 1}\end{align}} \right]\).

First find \({u_1} \cdot {u_2}\):

\(\begin{align}{c}{u_1} \cdot {u_2} = \left( 5 \right)\left( { - 4} \right) + \left( { - 4} \right)\left( 1 \right) + \left( 0 \right)\left( { - 3} \right) + \left( 3 \right)\left( 8 \right)\\ = - 20 - 4 + 0 + 24\\ = 0\end{align}\)

Now, find \({u_2} \cdot {u_3}\):

\(\begin{align}{c}{u_2} \cdot {u_3} = \left( { - 4} \right)\left( 3 \right) + \left( 1 \right)\left( 3 \right) + \left( { - 3} \right)\left( 5 \right) + \left( 8 \right)\left( { - 1} \right)\\ = - 12 + 3 - 15 - 8\\ = - 32\end{align}\)

Since \({u_2} \cdot {u_3} \ne 0\), hence, the given set is not orthogonal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

  1. \(\left( {\begin{aligned}{{}{}}3\\0\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}8\\5\\{ - 6}\end{aligned}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

5. \(\left( {\frac{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}} \right){\mathop{\rm v}\nolimits} \)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation that preserves lengths; that is, \(\left\| {T\left( {\bf{x}} \right)} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).

  1. Show that T also preserves orthogonality; that is, \(T\left( {\bf{x}} \right) \cdot T\left( {\bf{y}} \right) = 0\) whenever \({\bf{x}} \cdot {\bf{y}} = 0\).
  2. Show that the standard matrix of T is an orthogonal matrix.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free