Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}3\\{-2}\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{-1}\\3\\{-3}\\4\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\0\end{array}} \right]\)

Short Answer

Expert verified

The given set is orthogonal.

Step by step solution

01

Definition of an orthogonal set

If \({u_i} \cdot {u_j}\) for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check for orthogonality of vectors

Let the given vectors be, \({u_1} = \left[ {\begin{align}3\\{ - 2}\\1\\3\end{align}} \right]\), \({u_2} = \left[ {\begin{align}{-1}\\{3}\\{-3}\\4\end{align}} \right]\) and \({u_3} = \left[ {\begin{align}3\\8\\7\\0\end{align}} \right]\).

First, find \({u_1} \cdot {u_2}\):

\(\begin{align}{c}{u_1} \cdot {u_2} = \left( 3 \right)\left( { - 1} \right) + \left( { - 2} \right)\left( 3 \right) + \left( 1 \right)\left( { - 3} \right) + \left( 3 \right)\left( 4 \right)\\ = - 3 - 6 - 3 + 12\\ = 0\end{align}\)

Now, find \({u_2} \cdot {u_3}\)::

\(\begin{align}{c}{u_2} \cdot {u_3} = \left( { - 1} \right)\left( 3 \right) + \left( 3 \right)\left( 8 \right) + \left( { - 3} \right)\left( 7 \right) + \left( 4 \right)\left( 0 \right)\\ = - 3 + 24 - 21 + 0\\ = 0\end{align}\)

And find \({u_1} \cdot {u_3}\)::

\(\begin{align}{c}{u_1} \cdot {u_3} = \left( 3 \right)\left( 3 \right) + \left( { - 2} \right)\left( 8 \right) + \left( 1 \right)\left( 7 \right) + \left( 3 \right)\left( 0 \right)\\ = 9 - 16 + 7 + 0\\ = 0\end{align}\)

Since all the pairs are orthogonal hence, the given set is orthogonal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\1\\{ - 3}\\8\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\3\\5\\{ - 1}\end{array}} \right]\)

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

12. \(\left( {\begin{aligned}{{}{}}1&3&5\\{ - 1}&{ - 3}&1\\0&2&3\\1&5&2\\1&5&8\end{aligned}} \right)\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[{\bf{y}}\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

5.\[y = \left[ {\begin{aligned}{ - 1}\\2\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}3\\{ - 1}\\2\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\{ - 2}\end{aligned}} \right]\]

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gram–Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free