Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

4.\(y = \left[ {\begin{aligned}{\bf{6}}\\{\bf{3}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{3}}\\{\bf{4}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{4}}}\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right]\)

Short Answer

Expert verified

The orthogonal projection is \(\left[ {\begin{aligned}6\\3\\0\end{aligned}} \right]\).

Step by step solution

01

Perform the orthogonality test for \({{\bf{u}}_1}\) and \({{\bf{u}}_{\bf{2}}}\)

The orthogonality test for vectors\({{\bf{u}}_1}\)and\({{\bf{u}}_2}\)can be performed as follows:

\[\begin{aligned}{c}{{\bf{u}}_1} \cdot {{\bf{u}}_2} &= {\bf{u}}_1^T{{\bf{u}}_2}\\ &= \left[ {\begin{aligned}3&4&0\end{aligned}} \right]\left[ {\begin{aligned}{ - 4}\\3\\0\end{aligned}} \right]\\ &= - 12 + 12\\ &= 0\end{aligned}\]

Thus, the vectors \({{\bf{u}}_1}\) and \({{\bf{u}}_2}\) are orthogonal.

02

Find the orthogonal component

The orthogonal component in the\({\rm{span}}\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\)is:

\(\begin{aligned}{c}{\bf{\hat y}} &= \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \frac{{{\bf{y}} \cdot {{\bf{u}}_{\bf{2}}}}}{{{{\bf{u}}_{\bf{2}}} \cdot {{\bf{u}}_{\bf{2}}}}}{{\bf{u}}_2}\\ &= \frac{{{{\bf{y}}^T} \cdot {{\bf{u}}_1}}}{{{\bf{u}}_{\bf{1}}^T \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \frac{{{{\bf{y}}^T} \cdot {{\bf{u}}_{\bf{2}}}}}{{{\bf{u}}_2^T \cdot {{\bf{u}}_{\bf{2}}}}}{{\bf{u}}_2}\\ &= \frac{{\left[ {\begin{aligned}6&3&{ - 2}\end{aligned}} \right]\left[ {\begin{aligned}3\\4\\0\end{aligned}} \right]}}{{\left[ {\begin{aligned}3&4&0\end{aligned}} \right]\left[ {\begin{aligned}3\\4\\0\end{aligned}} \right]}}{{\bf{u}}_1} + \frac{{\left[ {\begin{aligned}6&3&{ - 2}\end{aligned}} \right]\left[ {\begin{aligned}{ - 4}\\3\\0\end{aligned}} \right]}}{{\left[ {\begin{aligned}{ - 4}&3&0\end{aligned}} \right]\left[ {\begin{aligned}{ - 4}\\3\\0\end{aligned}} \right]}}{{\bf{u}}_2}\\ &= \frac{{30}}{{25}}\left[ {\begin{aligned}3\\4\\0\end{aligned}} \right] - \frac{3}{5}\left[ {\begin{aligned}{ - 4}\\3\\0\end{aligned}} \right]\\ &= \left[ {\begin{aligned}6\\3\\0\end{aligned}} \right]\end{aligned}\)

Thus, the orthogonal projection is \(\left[ {\begin{aligned}6\\3\\0\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 1 and 2, you may assume that\(\left\{ {{{\bf{u}}_{\bf{1}}},...,{{\bf{u}}_{\bf{4}}}} \right\}\)is an orthogonal basis for\({\mathbb{R}^{\bf{4}}}\).

2.\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{3}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{4}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({\bf{x}} = \left[ {\begin{aligned}{\bf{4}}\\{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right]\)

Write v as the sum of two vectors, one in\({\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\)and the other in\({\bf{Span}}\left\{ {{{\bf{u}}_2},{{\bf{u}}_3},{{\bf{u}}_{\bf{4}}}} \right\}\).

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

10.\[y = \left[ {\begin{aligned}3\\4\\5\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\0\\1\\1\end{aligned}} \right]\],\[{{\bf{u}}_3} = \left[ {\begin{aligned}0\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

Compute the least-squares error associated with the least square solution found in Exercise 3.

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

In Exercises 11 and 12, find the closest point to \[{\bf{y}}\] in the subspace \[W\] spanned by \[{{\bf{v}}_1}\], and \[{{\bf{v}}_2}\].

12. \[y = \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right]\], \[{{\bf{v}}_1} = \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\], \[{{\bf{v}}_2} = \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free