Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let\(y = \left( {\begin{aligned}{}7\\9\end{aligned}} \right)\),\({{\bf{u}}_1} = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\\{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {\sqrt {10} }}} \right.} {\sqrt {10} }}}\end{aligned}} \right)\), and\(W = {\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\).

  1. Let \(U\)be the\(2 \times 1\)matrix whose only column is\({{\bf{u}}_1}\). Compute\({U^T}U\)and\(U{U^T}\).
  2. Compute\({\bf{Pro}}{{\bf{j}}_W}y\)and\(\left( {{U^T}U} \right){\bf{y}}\).

Short Answer

Expert verified
    1. The matrices are\({U^T}U = \left( 1 \right)\),\(U{U^T} = \left( {\begin{aligned}{}{{1 \mathord{\left/{\vphantom {1 {10}}} \right.} {10}}}&{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {10}}} \right.} {10}}}\\{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {10}}} \right.} {10}}}&{{9 \mathord{\left/{\vphantom {9 {10}}} \right.} {10}}}\end{aligned}} \right)\).
    2. \({\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}} = \left( {\begin{aligned}{}{ - 2}\\6\end{aligned}} \right)\).

Step by step solution

01

Form \(U = \left( {{{\bf{u}}_1}} \right)\)

(a)

Given vector is\({{\bf{u}}_1} = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\\{ - {3 \mathord{\left/

{\vphantom {3 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\end{aligned}} \right)\).

Find\(U = \left( {{{\bf{u}}_1}} \right)\).

\(U = \left( {\begin{aligned}{}{{1 \mathord{\left/{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\\{ - {3 \mathord{\left/{\vphantom {3 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\end{aligned}} \right)\)

02

Determine \({U^T}U\) and \(U{U^T}\)

First, find the transpose of\(U\), that is\({U^T}\).

\({U^T} = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}}&{ - {3 \mathord{\left/

{\vphantom {3 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\end{aligned}} \right)\)

Now, compute\({U^T}U\)and\(U{U^T}\).

\(\begin{aligned}{c}{U^T}U = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}}&{ - {3 \mathord{\left/

{\vphantom {3 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\end{aligned}} \right)\left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\\{ - {3 \mathord{\left/

{\vphantom {3 {\sqrt {10} }}} \right.} {\sqrt {10} }}}\end{aligned}} \right)\\ = \left( {\frac{1}{{10}} + \frac{9}{{10}}} \right)\\ = \left( 1 \right)\end{aligned}\)

And,

\(\begin{aligned}{c}U{U^T} = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.

\kern-\nulldelimiterspace} {\sqrt {10} }}}\\{ - {3 \mathord{\left/

{\vphantom {3 {\sqrt {10} }}} \right.

\kern-\nulldelimiterspace} {\sqrt {10} }}}\end{aligned}} \right)\left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {\sqrt {10} }}} \right.

\kern-\nulldelimiterspace} {\sqrt {10} }}}&{ - {3 \mathord{\left/

{\vphantom {3 {\sqrt {10} }}} \right.

\kern-\nulldelimiterspace} {\sqrt {10} }}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {10}}} \right.

\kern-\nulldelimiterspace} {10}}}&{{{ - 3} \mathord{\left/

{\vphantom {{ - 3} {10}}} \right.

\kern-\nulldelimiterspace} {10}}}\\{{{ - 3} \mathord{\left/

{\vphantom {{ - 3} {10}}} \right.

\kern-\nulldelimiterspace} {10}}}&{{9 \mathord{\left/

{\vphantom {9 {10}}} \right.

\kern-\nulldelimiterspace} {10}}}\end{aligned}} \right)\end{aligned}\)

Hence,\({U^T}U = \left( 1 \right)\)and\(U{U^T} = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {10}}} \right.

\kern-\nulldelimiterspace} {10}}}&{{{ - 3} \mathord{\left/

{\vphantom {{ - 3} {10}}} \right.

\kern-\nulldelimiterspace} {10}}}\\{{{ - 3} \mathord{\left/

{\vphantom {{ - 3} {10}}} \right.

\kern-\nulldelimiterspace} {10}}}&{{9 \mathord{\left/

{\vphantom {9 {10}}} \right.

\kern-\nulldelimiterspace} {10}}}\end{aligned}} \right)\).

03

Write the Theorem

Let \({\bf{y}} \in {\mathbb{R}^n}\), then \({\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}}\), if \(U = \left( {\begin{aligned}{}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}& \cdots &{{{\bf{u}}_p}}\end{aligned}} \right)\).

04

Find \({\bf{Pro}}{{\bf{j}}_W}y\) and \(\left( {{U^T}U} \right)y\)

(b)

It is observed\(U = \left( {{{\bf{u}}_1}} \right)\)from part (a), then\({\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}}\).

From part (a), \(U{U^T} = \left( {\begin{aligned}{}{{1 \mathord{\left/{\vphantom {1 {10}}} \right.} {10}}}&{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {10}}} \right.} {10}}}\\{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {10}}} \right.} {10}}}&{{9 \mathord{\left/

{\vphantom {9 {10}}} \right} {10}}}\end{aligned}} \right)\), then find \(U{U^T}{\bf{y}}\), where \({\bf{y}} = \left( {\begin{aligned}{}7\\9\end{aligned}} \right)\).

\(\begin{aligned}{c}U{U^T}{\bf{y}} = \left( {\begin{aligned}{}{{1 \mathord{\left/

{\vphantom {1 {10}}} \right} {10}}}&{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {10}}} \right.} {10}}}\\{{{ - 3} \mathord{\left/{\vphantom {{ - 3} {10}}} \right.} {10}}}&{{9 \mathord{\left/ {\vphantom {9 {10}}} \right.

\kern-\nulldelimiterspace} {10}}}\end{aligned}} \right)\left( {\begin{aligned}{}7\\9\end{aligned}} \right)\\ = \left( {\begin{aligned}{}{\frac{7}{{10}} - \frac{{27}}{{10}}}\\{ - \frac{{21}}{{10}} + \frac{{81}}{{10}}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{}{ - \frac{{20}}{{10}}}\\{\frac{{60}}{{10}}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{}{ - 2}\\6\end{aligned}} \right)\end{aligned}\)

So,\({\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = \left( {\begin{aligned}{}{ - 2}\\6\end{aligned}} \right)\), as\({\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {1,0} \right),\left( {2,1} \right),\left( {4,2} \right),\left( {5,3} \right)\)

Suppose radioactive substance A and B have decay constants of \(.02\) and \(.07\), respectively. If a mixture of these two substances at a time \(t = 0\) contains \({M_A}\) grams of \(A\) and \({M_B}\) grams of \(B\), then a model for the total amount of mixture present at time \(t\) is

\(y = {M_A}{e^{ - .02t}} + {M_B}{e^{ - .07t}}\) (6)

Suppose the initial amounts \({M_A}\) and are unknown, but a scientist is able to measure the total amounts present at several times and records the following points \(\left( {{t_i},{y_i}} \right):\left( {10,21.34} \right),\left( {11,20.68} \right),\left( {12,20.05} \right),\left( {14,18.87} \right)\) and \(\left( {15,18.30} \right)\).

a.Describe a linear model that can be used to estimate \({M_A}\) and \({M_B}\).

b. Find the least-squares curved based on (6).

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

12. \(\left( {\begin{aligned}{{}{}}1&3&5\\{ - 1}&{ - 3}&1\\0&2&3\\1&5&2\\1&5&8\end{aligned}} \right)\)

Suppose \(A = QR\), where \(R\) is an invertible matrix. Showthat \(A\) and \(Q\) have the same column space.

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align} 2\\{-5}\\{-3}\end{align}} \right]\), \(\left[ {\begin{align}0\\0\\0\end{align}} \right]\), \(\left[ {\begin{align} 4\\{ - 2}\\6\end{align}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free