Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\rm{y}} = \left( {\begin{aligned}{{}}4\\8\\1\end{aligned}} \right)\), \({{\bf{u}}_1} = \left( {\begin{aligned}{{}}{{2 \mathord{\left/ {\vphantom {2 3}} \right.} 3}}\\{{1 \mathord{\left/

{\vphantom {1 3}} \right.} 3}}\\{{2 \mathord{\left/{\vphantom {2 3}} \right.} 3}}\end{aligned}} \right)\),\({{\bf{u}}_1} = \left( {\begin{aligned}{{}}{{{ - 2} \mathord{\left/{\vphantom {{ - 2} 3}} \right.} 3}}\\{{2 \mathord{\left/{\vphantom {2 3}} \right.} 3}}\\{{1 \mathord{\left/{\vphantom {1 3}} \right.} 3}}\end{aligned}} \right)\)and \(W = {\bf{Span}}\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\).

  1. Let\(U = \left( {\begin{aligned}{{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{aligned}} \right)\). Compute \({U^T}U\) and \(U{U^T}\).
  2. Compute \({\bf{Pro}}{{\bf{j}}_W}{\bf{y}}\) and \(\left( {U{U^T}} \right){\bf{y}}\).

Short Answer

Expert verified
  1. The matrices are \[{U^T}U = \left[ {\begin{aligned}1&0\\0&1\end{aligned}} \right]\], and \[U{U^T} = \left[ {\begin{aligned}{\frac{8}{9}}&{\frac{{ - 2}}{9}}&{\frac{2}{9}}\\{\frac{{ - 2}}{9}}&{\frac{5}{9}}&{\frac{4}{9}}\\{\frac{2}{9}}&{\frac{4}{9}}&{\frac{5}{9}}\end{aligned}} \right]\].
  2. \[{\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}} = \left[ {\begin{aligned}2\\4\\5\end{aligned}} \right]\].

Step by step solution

01

Form \[U = \left[ {\begin{aligned}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{aligned}} \right]\]

(a)

Given vectors are,\[{{\bf{u}}_1} = \left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\], and \[{{\bf{u}}_2} = \left[ {\begin{aligned}{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\].

Find \[U = \left[ {\begin{aligned}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{aligned}} \right]\].

\[U = \left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\]

02

Determine \[{U^T}U\] and \[U{U^T}\]

First, find the transpose of \[U\], that is \[{U^T}\].

\[{U^T} = \left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\]

Now, compute \[{U^T}U\] and \[U{U^T}\].

\[\begin{aligned}{U^T}U = \left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\\ = \left[ {\begin{aligned}{\frac{4}{9} + \frac{1}{9} + \frac{4}{9}}&{\frac{{ - 4}}{9} + \frac{2}{9} + \frac{2}{9}}\\{\frac{{ - 4}}{9} + \frac{2}{9} + \frac{2}{9}}&{\frac{4}{9} + \frac{4}{9} + \frac{1}{9}}\end{aligned}} \right]\\ = \left[ {\begin{aligned}1&0\\0&1\end{aligned}} \right]\end{aligned}\]

\[\begin{aligned}U{U^T} = \left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\left[ {\begin{aligned}{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right]\\ = \left[ {\begin{aligned}{\frac{4}{9} + \frac{4}{9}}&{\frac{2}{9} - \frac{4}{9}}&{\frac{4}{9} - \frac{2}{9}}\\{\frac{2}{9} - \frac{4}{9}}&{\frac{1}{9} + \frac{4}{9}}&{\frac{2}{9} + \frac{2}{9}}\\{\frac{4}{9} - \frac{2}{9}}&{\frac{2}{9} + \frac{2}{9}}&{\frac{4}{9} + \frac{1}{9}}\end{aligned}} \right]\\ = \left[ {\begin{aligned}{\frac{8}{9}}&{\frac{{ - 2}}{9}}&{\frac{2}{9}}\\{\frac{{ - 2}}{9}}&{\frac{5}{9}}&{\frac{4}{9}}\\{\frac{2}{9}}&{\frac{4}{9}}&{\frac{5}{9}}\end{aligned}} \right]\end{aligned}\]

Hence, \[{U^T}U = \left[ {\begin{aligned}1&0\\0&1\end{aligned}} \right]\] and \[U{U^T} = \left[ {\begin{aligned}{\frac{8}{9}}&{\frac{{ - 2}}{9}}&{\frac{2}{9}}\\{\frac{{ - 2}}{9}}&{\frac{5}{9}}&{\frac{4}{9}}\\{\frac{2}{9}}&{\frac{4}{9}}&{\frac{5}{9}}\end{aligned}} \right]\].

03

Write the Theorem

Let \[{\bf{y}} \in {\mathbb{R}^n}\], then \[{\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}}\], if \[U = \left[ {\begin{aligned}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}& \cdots &{{{\bf{u}}_p}}\end{aligned}} \right]\].

04

Find \[{\bf{Pro}}{{\bf{j}}_W}{\rm{y}}\] and \[\left( {{U^T}U} \right){\rm{y}}\] 

(b).

Since \[U = \left[ {\begin{aligned}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{aligned}} \right]\] from part (a). then \[{\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}}\].

From part (a) \[U{U^T} = \left[ {\begin{aligned}{\frac{8}{9}}&{\frac{{ - 2}}{9}}&{\frac{2}{9}}\\{\frac{{ - 2}}{9}}&{\frac{5}{9}}&{\frac{4}{9}}\\{\frac{2}{9}}&{\frac{4}{9}}&{\frac{5}{9}}\end{aligned}} \right]\], then find \[U{U^T}{\bf{y}}\], where \[{\bf{y}} = \left[ {\begin{aligned}4\\8\\1\end{aligned}} \right]\].

\[\begin{aligned}U{U^T}{\bf{y}} = \left[ {\begin{aligned}{\frac{8}{9}}&{\frac{{ - 2}}{9}}&{\frac{2}{9}}\\{\frac{{ - 2}}{9}}&{\frac{5}{9}}&{\frac{4}{9}}\\{\frac{2}{9}}&{\frac{4}{9}}&{\frac{5}{9}}\end{aligned}} \right]\left[ {\begin{aligned}4\\8\\1\end{aligned}} \right]\\ = \left[ {\begin{aligned}{\frac{{32}}{9} - \frac{{16}}{9} + \frac{2}{9}}\\{\frac{{ - 8}}{9} + \frac{{40}}{9} + \frac{4}{9}}\\{\frac{8}{9} + \frac{{32}}{9} + \frac{5}{9}}\end{aligned}} \right]\\ = \left[ {\begin{aligned}2\\4\\5\end{aligned}} \right]\end{aligned}\]

So, \[{\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = \left[ {\begin{aligned}2\\4\\5\end{aligned}} \right]\], as \[{\rm{Pro}}{{\rm{j}}_W}{\bf{y}} = U{U^T}{\bf{y}}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

Determine which pairs of vectors in Exercises 15-18 are orthogonal.

15. \({\mathop{\rm a}\nolimits} = \left( {\begin{aligned}{*{20}{c}}8\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\{ - 3}\end{aligned}} \right)\)

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

A certain experiment produces the data \(\left( {1,1.8} \right),\left( {2,2.7} \right),\left( {3,3.4} \right),\left( {4,3.8} \right),\left( {5,3.9} \right)\). Describe the model that produces a least-squares fit of these points by a function of the form

\(y = {\beta _1}x + {\beta _2}{x^2}\)

Such a function might arise, for example, as the revenue from the sale of \(x\) units of a product, when the amount offered for sale affects the price to be set for the product.

a. Give the design matrix, the observation vector, and the unknown parameter vector.

b. Find the associated least-squares curve for the data.

Let \(X\) be the design matrix used to find the least square line of fit data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\). Use a theorem in Section 6.5 to show that the normal equations have a unique solution if and only if the data include at least two data points with different \(x\)-coordinates.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free