Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let\[y = \left[ {\begin{aligned}5\\{ - 9}\\5\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right]\]. Find the distance from\[y\]to plane in\[{\mathbb{R}^3}\]spanned by\[{{\bf{u}}_1}\], and\[{{\bf{u}}_2}\].

Short Answer

Expert verified

The distance is \[2\sqrt {10} \].

Step by step solution

01

Write the definition

Orthogonal set: If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check the set of given vectors is orthogonal or not

Given vectors are,\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right]\], and\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right]\].

Find\[{{\bf{u}}_1} \cdot {{\bf{u}}_2}\].

\[\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right]\\ &= - 3\left( { - 3} \right) + \left( { - 5} \right)\left( 2 \right) + \left( 1 \right)\left( 1 \right)\\ &= 0\end{aligned}\]

As \[{{\bf{u}}_1} \cdot {{\bf{u}}_2} = 0\], so the set of vectors \[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\] is orthogonal.

03

The Best Approximation Theorem

Here, \[{\bf{\hat y}}\] is said to be the closest point in \[w\] to \[{\bf{y}}\] for which \[\left\| {{\bf{y}} - {\bf{\hat y}}} \right\| < \left\| {{\bf{y}} - {\bf{v}}} \right\|\] for all \[{\bf{v}}\] in \[w\] distinct from \[{\bf{\hat y}}\], if \[{\bf{\hat y}}\] be the orthogonal projection of \[{\bf{y}}\] onto \[w\], where \[w\] is a subspace of \[{\mathbb{R}^n}\], and \[{\bf{y}} \in w\]. \[{\bf{\hat y}}\] can be found as:

\[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\]

04

Find the distance

The distance from\[{\bf{y}}\]to the closest point is also the distance between the point\[{\bf{y}}\]in\[{\mathbb{R}^3}\]to subspace\[w\], so the distance can be found by\[\left\| {{\bf{y}} - {\bf{\hat y}}} \right\|\].

Find\[{\bf{y}} \cdot {{\bf{u}}_1}\],\[{\bf{y}} \cdot {{\bf{u}}_2}\],\[{{\bf{u}}_1} \cdot {{\bf{u}}_1}\], and\[{{\bf{u}}_2} \cdot {{\bf{u}}_2}\]first, where\[{\bf{y}} = \left[ {\begin{aligned}5\\{ - 9}\\5\end{aligned}} \right]\].

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}5\\{ - 9}\\5\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right]\\ &= 5\left( { - 3} \right) + \left( { - 9} \right)\left( { - 5} \right) + 5\left( 1 \right)\\ &= 35\end{aligned}\]

\[\begin{aligned}{\bf{y}} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}5\\{ - 9}\\5\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right]\\ &= 5\left( { - 3} \right) + \left( { - 9} \right)\left( 2 \right) + 5\left( 1 \right)\\ &= - 28\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_1} &= \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right]\\ &= - 3\left( { - 3} \right) + \left( { - 5} \right)\left( { - 5} \right) + \left( 1 \right)\left( 1 \right)\\ &= 35\end{aligned}\]

\[\begin{aligned}{{\bf{u}}_2} \cdot {{\bf{u}}_2} &= \left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right] \cdot {{\bf{u}}_2}\left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right]\\ &= - 3\left( { - 3} \right) + \left( 2 \right)\left( 2 \right) + 1\left( 1 \right)\\ &= 14\end{aligned}\]

Now, find the closest point to\[{\bf{y}}\], that is\[{\bf{\hat y}}\]by using the formula\[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\].

\[\begin{aligned}{c}{\bf{\hat y}} = \frac{{35}}{{35}}{{\bf{u}}_1} - \frac{{28}}{{14}}{{\bf{u}}_2}\\ = {{\bf{u}}_1} - 2{{\bf{u}}_2}\\ = \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right] - 2\left[ {\begin{aligned}{ - 3}\\2\\1\end{aligned}} \right]\\ = \left[ {\begin{aligned}{ - 3}\\{ - 5}\\1\end{aligned}} \right] - \left[ {\begin{aligned}{ - 6}\\4\\2\end{aligned}} \right]\\ = \left[ {\begin{aligned}3\\{ - 9}\\{ - 1}\end{aligned}} \right]\end{aligned}\]

Hence,theclosest point is\[\left[ {\begin{aligned}3\\{ - 9}\\{ - 1}\end{aligned}} \right]\].

Now, find the distance by using\[\left\| {{\bf{y}} - {\bf{\hat y}}} \right\|\].

\[\begin{aligned}\left\| {{\bf{y}} - {\bf{\hat y}}} \right\| &= \left\| {\left[ {\begin{aligned}5\\{ - 9}\\5\end{aligned}} \right] - \left[ {\begin{aligned}3\\{ - 9}\\{ - 1}\end{aligned}} \right]} \right\|\\ &= \left\| {\left[ {\begin{aligned}2\\0\\6\end{aligned}} \right]} \right\|\\ &= \sqrt {{2^2} + 0 + {6^2}} \\ &= \sqrt {40} \\ &= 2\sqrt {10} \end{aligned}\]

So, the distance is\[2\sqrt {10} \].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A simple curve that often makes a good model for the variable costs of a company, a function of the sales level \(x\), has the form \(y = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\). There is no constant term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the linear model that leads to a least-squares fit of the equation above, with data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\).

b. Find the least-squares curve of the form above to fit the data \(\left( {4,1.58} \right),\left( {6,2.08} \right),\left( {8,2.5} \right),\left( {10,2.8} \right),\left( {12,3.1} \right),\left( {14,3.4} \right),\left( {16,3.8} \right)\) and \(\left( {18,4.32} \right)\), with values in thousands. If possible, produce a graph that shows the data points and the graph of the cubic approximation.

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

Find an orthonormal basis of the subspace spanned by the vectors in Exercise 3.

Compute the least-squares error associated with the least square solution found in Exercise 3.

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free