Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13 and 14, find the best approximation to\[{\bf{z}}\]by vectors of the form\[{c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2}\].

14.\[z = \left[ {\begin{aligned}2\\4\\0\\{ - 1}\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}5\\{ - 2}\\4\\2\end{aligned}} \right]\]

Short Answer

Expert verified

The best approximation to \[{\bf{z}}\] is \[\frac{1}{2}{{\bf{v}}_1} + 0{{\bf{v}}_2} = \left[ {\begin{aligned}1\\0\\{ - \frac{1}{2}}\\{ - \frac{3}{2}}\end{aligned}} \right]\].

Step by step solution

01

Write the definition

Orthogonal set: If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check the set of given vectors is orthogonal or not

Given vectors are,\[{{\bf{v}}_1} = \left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right]\], and \[{{\bf{v}}_2} = \left[ {\begin{aligned}5\\{ - 2}\\4\\2\end{aligned}} \right]\].

Find \[{{\bf{v}}_1} \cdot {{\bf{v}}_2}\].

\[\begin{aligned}{{\bf{v}}_1} \cdot {{\bf{v}}_2} &= \left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right] \cdot \left[ {\begin{aligned}5\\{ - 2}\\4\\2\end{aligned}} \right]\\ &= 2\left( 5 \right) + \left( 0 \right)\left( { - 2} \right) + \left( { - 1} \right)\left( 4 \right) + \left( { - 3} \right)\left( 2 \right)\\ &= 0\end{aligned}\]

As \[{{\bf{v}}_1} \cdot {{\bf{v}}_2} = 0\], so the set of vectors \[\left\{ {{{\bf{v}}_1},{{\bf{v}}_2}} \right\}\] is orthogonal.

03

The Best Approximation Theorem

Here, \[{\bf{\hat y}}\] is said to be the closest pointin \[w\] to \[{\bf{y}}\], if \[{\bf{\hat y}}\] be the orthogonal projection of \[{\bf{y}}\] onto \[w\], where \[w\] is a subspace of \[{\mathbb{R}^n}\], and \[{\bf{y}} \in w\]. \[{\bf{\hat y}}\] can be found as:

\[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\]

04

Find the best approximation

Find \[{\bf{z}} \cdot {{\bf{v}}_1}\], \[{\bf{z}} \cdot {{\bf{v}}_2}\], \[{{\bf{v}}_1} \cdot {{\bf{v}}_1}\], and \[{{\bf{v}}_2} \cdot {{\bf{v}}_2}\] first, where \[{\bf{z}} = \left[ {\begin{aligned}2\\4\\0\\{ - 1}\end{aligned}} \right]\].

\[\begin{aligned}{\bf{z}} \cdot {{\bf{v}}_1} &= \left[ {\begin{aligned}2\\4\\0\\{ - 1}\end{aligned}} \right] \cdot \left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right]\\ &= 2\left( 2 \right) + \left( 4 \right)\left( 0 \right) + 0\left( { - 1} \right) + \left( { - 1} \right)\left( { - 3} \right)\\ &= 7\end{aligned}\]

\[\begin{aligned}{\bf{z}} \cdot {{\bf{v}}_2} &= \left[ {\begin{aligned}2\\4\\0\\{ - 1}\end{aligned}} \right] \cdot \left[ {\begin{aligned}5\\{ - 2}\\4\\2\end{aligned}} \right]\\ &= 2\left( 5 \right) + \left( 4 \right)\left( { - 2} \right) + 0\left( 4 \right) + \left( { - 1} \right)\left( 2 \right)\\ &= 0\end{aligned}\]

\[\begin{aligned}{{\bf{v}}_1} \cdot {{\bf{v}}_1} &= \left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right] \cdot \left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right]\\ &= 2\left( 2 \right) + \left( 0 \right)\left( 0 \right) + \left( { - 1} \right)\left( { - 1} \right) + \left( { - 3} \right)\left( { - 3} \right)\\ &= 14\end{aligned}\]

\[\begin{aligned}{{\bf{v}}_2} \cdot {{\bf{v}}_2} &= \left[ {\begin{aligned}5\\{ - 2}\\4\\2\end{aligned}} \right] \cdot \left[ {\begin{aligned}5\\{ - 2}\\4\\2\end{aligned}} \right]\\ &= 5\left( 5 \right) + \left( { - 2} \right)\left( { - 2} \right) + 4\left( 4 \right) + 2\left( 2 \right)\\ &= 49\end{aligned}\]

Now, find the best approximation to \[{\bf{z}}\], that is \[{\bf{\hat z}}\] by using the formula \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\].

\[\begin{aligned}{\bf{\hat z}} &= \frac{7}{{14}}{{\bf{v}}_1} + \frac{0}{{49}}{{\bf{v}}_2}\\ &= \frac{1}{2}{{\bf{v}}_1} - 0{{\bf{v}}_2}\\ &= \frac{1}{2}\left[ {\begin{aligned}2\\0\\{ - 1}\\{ - 3}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}1\\0\\{ - \frac{1}{2}}\\{ - \frac{3}{2}}\end{aligned}} \right]\end{aligned}\]

Hence,thebest approximation to \[{\bf{z}}\] is\[\frac{1}{2}{{\bf{v}}_1} + 0{{\bf{v}}_2} = \left[ {\begin{aligned}1\\0\\{ - \frac{1}{2}}\\{ - \frac{3}{2}}\end{aligned}} \right]\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set. Verify the following equality by induction, beginning with \(p = 2\). If \({\bf{x}} = {c_1}{{\bf{v}}_1} + \ldots + {c_p}{{\bf{v}}_p}\), then

\({\left\| {\bf{x}} \right\|^2} = {\left| {{c_1}} \right|^2} + {\left| {{c_2}} \right|^2} + \ldots + {\left| {{c_p}} \right|^2}\)

For a matrix program, the Gramโ€“Schmidt process worksbetter with orthonormal vectors. Starting with \({x_1},......,{x_p}\) asin Theorem 11, let \(A = \left\{ {{x_1},......,{x_p}} \right\}\) . Suppose \(Q\) is an\(n \times k\)matrix whose columns form an orthonormal basis for

the subspace \({W_k}\) spanned by the first \(k\) columns of A. Thenfor \(x\) in \({\mathbb{R}^n}\), \(Q{Q^T}x\) is the orthogonal projection of x onto \({W_k}\) (Theorem 10 in Section 6.3). If \({x_{k + 1}}\) is the next column of \(A\),then equation (2) in the proof of Theorem 11 becomes

\({v_{k + 1}} = {x_{k + 1}} - Q\left( {{Q^T}T {x_{k + 1}}} \right)\)

(The parentheses above reduce the number of arithmeticoperations.) Let \({u_{k + 1}} = \frac{{{v_{k + 1}}}}{{\left\| {{v_{k + 1}}} \right\|}}\). The new \(Q\) for thenext step is \(\left( {\begin{aligned}{{}{}}Q&{{u_{k + 1}}}\end{aligned}} \right)\). Use this procedure to compute the\(QR\)factorization of the matrix in Exercise 24. Write thekeystrokes or commands you use.

Use the Gramโ€“Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

\(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\)

Find an orthonormal basis of the subspace spanned by the vectors in Exercise 4.

In Exercises 9-12, find a unit vector in the direction of the given vector.

11. \(\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free