Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 11 and 12, find the closest point to \[{\bf{y}}\] in the subspace \[W\] spanned by \[{{\bf{v}}_1}\], and \[{{\bf{v}}_2}\].

12. \[y = \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right]\], \[{{\bf{v}}_1} = \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\], \[{{\bf{v}}_2} = \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\]

Short Answer

Expert verified

The closest point is {\bf{\hat y}} = \left[ {\begin{array}{ - 1}\\{ - 5}\\{ - 3}\\9\end{array}} \right].

Step by step solution

01

Write the definition

Orthogonal set: If \[{{\bf{u}}_i} \cdot {{\bf{u}}_j} = 0\] for \[i \ne j\], then the set of vectors \[\left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\} \in {\mathbb{R}^n}\] is said to be orthogonal.

02

Check the set of given vectors is orthogonal or not

Given vectors are,\[{{\bf{v}}_1} = \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\], and \[{{\bf{v}}_2} = \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\].

Find \[{{\bf{v}}_1} \cdot {{\bf{v}}_2}\].

\[\begin{aligned}{{\bf{v}}_1} \cdot {{\bf{v}}_2} &= \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\\ &= 1\left( { - 4} \right) + \left( { - 2} \right)\left( 1 \right) + \left( { - 1} \right)\left( 0 \right) + 2\left( 3 \right)\\ &= 0\end{aligned}\]

As \[{{\bf{v}}_1} \cdot {{\bf{v}}_2} = 0\], so the set of vectors \[\left\{ {{{\bf{v}}_1},{{\bf{v}}_2}} \right\}\] is orthogonal.

03

The Best Approximation Theorem

Here, \[{\bf{\hat y}}\] is said to be the closest pointin \[w\] to \[{\bf{y}}\], if \[{\bf{\hat y}}\] be the orthogonal projection of \[{\bf{y}}\] onto \[w\], where \[w\] is a subspace of \[{\mathbb{R}^n}\], and \[{\bf{y}} \in w\]. \[{\bf{\hat y}}\] can be found as:

\[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\]

04

Find the closest point

Find \[{\bf{y}} \cdot {{\bf{v}}_1}\], \[{\bf{y}} \cdot {{\bf{v}}_2}\], \[{{\bf{v}}_1} \cdot {{\bf{v}}_1}\], and \[{{\bf{v}}_2} \cdot {{\bf{v}}_2}\] first, where \[{\bf{y}} = \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right]\].

\[\begin{aligned}{\bf{y}} \cdot {{\bf{v}}_1} &= \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right] \cdot \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\\ &= 3\left( 1 \right) + \left( { - 1} \right)\left( { - 2} \right) + 1\left( { - 1} \right) + 13\left( 2 \right)\\ &= 30\end{aligned}\]

\[\begin{aligned}{\bf{y}} \cdot {{\bf{v}}_2} &= \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\\ &= 3\left( { - 4} \right) + \left( { - 1} \right)\left( 1 \right) + 1\left( 0 \right) + 13\left( 3 \right)\\ &= 26\end{aligned}\]

\[\begin{aligned}{{\bf{v}}_1} \cdot {{\bf{v}}_1} &= \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right] \cdot \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\\ &= 1\left( 1 \right) + \left( { - 2} \right)\left( { - 2} \right) + \left( { - 1} \right)\left( { - 1} \right) + \left( 2 \right)\left( 2 \right)\\ &= 10\end{aligned}\]

\[\begin{aligned}{{\bf{v}}_2} \cdot {{\bf{v}}_2} &= \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right] \cdot \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\\ &= - 4\left( { - 4} \right) + \left( 1 \right)\left( 1 \right) + 0\left( 0 \right) + \left( 3 \right)\left( 3 \right)\\ &= 26\end{aligned}\]

Now, find the closest point to \[{\bf{y}}\] by substituting the obtained values into \[{\bf{\hat y}} = \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \cdots + \frac{{{\bf{y}} \cdot {{\bf{u}}_p}}}{{{{\bf{u}}_p} \cdot {{\bf{u}}_p}}}{{\bf{u}}_p}\].

\[\begin{aligned}{\bf{\hat y}} = \frac{{30}}{{10}}{{\bf{v}}_1} + \frac{{26}}{{24}}{{\bf{v}}_2}\\ = 3\left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right] + \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\\ = \left[ {\begin{aligned}{ - 1}\\{ - 5}\\{ - 3}\\9\end{aligned}} \right]\end{aligned}\]

Hence,the closest point is \[{\bf{\hat y}} = \left[ {\begin{aligned}{ - 1}\\{ - 5}\\{ - 3}\\9\end{aligned}} \right]\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\) may be written in the form

\(\begin{aligned}{c}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

Derive the normal equations (7) from the matrix form given in this section.

In Exercises 7โ€“10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]โ€™s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

9.\[y = \left[ {\begin{aligned}4\\3\\3\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\3\\1\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\0\\1\\1\end{aligned}} \right]\]

A healthy childโ€™s systolic blood pressure (in millimetres of mercury) and weight (in pounds) are approximately related by the equation

\({\beta _0} + {\beta _1}\ln w = p\)

Use the following experimental data to estimate the systolic blood pressure of healthy child weighing 100 pounds.

\(\begin{array} w&\\ & {44}&{61}&{81}&{113}&{131} \\ \hline {\ln w}&\\vline & {3.78}&{4.11}&{4.39}&{4.73}&{4.88} \\ \hline p&\\vline & {91}&{98}&{103}&{110}&{112} \end{array}\)

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {1,0} \right),\left( {2,1} \right),\left( {4,2} \right),\left( {5,3} \right)\)

Find the distance between \({\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{10}\\{ - 3}\end{aligned}} \right)\) and \({\mathop{\rm y}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\{ - 5}\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free