Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose \[AB = \left[ {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{4}}\\{ - {\bf{2}}}&{\bf{3}}\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}{\bf{7}}&{\bf{3}}\\{\bf{2}}&{\bf{1}}\end{array}} \right]\]. Find A.

Short Answer

Expert verified

The matrix \[A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{13}\\{ - 8}&{27}\end{array}} \right]\].

Step by step solution

01

Use the inverse formula

\[{\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]^{ - 1}} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]when \[ad - bc \ne 0\].

02

Find the inverse of B

\[\begin{array}{c}{B^{ - 1}} = {\left[ {\begin{array}{*{20}{c}}7&3\\2&1\end{array}} \right]^{ - 1}}\\ = \frac{1}{{7\left( 1 \right) - 3\left( 2 \right)}}\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\ = \frac{1}{{7 - 6}}\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\ = 1\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\{B^{ - 1}} = \left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\end{array}\]

03

Find A

Right multiply \[{B^{ - 1}}\] on both sides of \[AB = \left[ {\begin{array}{*{20}{c}}7&3\\2&1\end{array}} \right]\]. Therefore,

\[\begin{array}{c}AB{B^{ - 1}} = \left[ {\begin{array}{*{20}{c}}5&4\\{ - 2}&3\end{array}} \right]{B^{ - 1}}\\A = \left[ {\begin{array}{*{20}{c}}5&4\\{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{5 - 8}&{ - 15 + 28}\\{ - 2 - 6}&{6 + 21}\end{array}} \right]\\A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{13}\\{ - 8}&{27}\end{array}} \right]\end{array}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

Suppose A, B, and Care \(n \times n\) matrices with A, X, and \(A - AX\) invertible, and suppose

\({\left( {A - AX} \right)^{ - 1}} = {X^{ - 1}}B\) …(3)

  1. Explain why B is invertible.
  2. Solve (3) for X. If you need to invert a matrix, explain why that matrix is invertible.

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free