Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Unless otherwise specified, assume that all matrices in these exercises are \(n \times n\). Determine which of the matrices in Exercises 1-10 are invertible. Use a few calculations as possible. Justify your answer.

9. [M] \[\left[ {\begin{array}{*{20}{c}}4&0&{ - 7}&{ - 7}\\{ - 6}&1&{11}&9\\7&{ - 5}&{10}&{19}\\{ - 1}&2&3&{ - 1}\end{array}} \right]\]

Short Answer

Expert verified

The matrix \(\left[ {\begin{array}{*{20}{c}}4&0&{ - 7}&{ - 7}\\{ - 6}&1&{11}&9\\7&{ - 5}&{10}&{19}\\{ - 1}&2&3&{ - 1}\end{array}} \right]\) is invertible.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

State the invertible matrix theorem

Let Abe a square \(n \times n\) matrix. Then the following statements are equivalent.

For a given matrix A, all these statements are either true or false.

  1. Ais an invertible matrix.
  2. Ais row equivalent to the identity matrix of the \(n \times n\) matrix.
  3. Ahas n pivot positions.
  4. The equation Ax = 0 has only the trivial solution.
  5. The columns of A form a linearly independent set.
  6. The linear transformation \(x \mapsto Ax\) is one-to-one.
  7. The equation \(Ax = b\) has at least one solution for each b in \({\mathbb{R}^n}\).
  8. The columns of Aspan \({\mathbb{R}^n}\).
  9. The linear transformation \(x \mapsto Ax\) maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).
  10. There is an \(n \times n\) matrix Csuch that CA = I.
  11. There is an \(n \times n\) matrix Dsuch that DA = I.
  12. \({A^T}\) is an invertible matrix.
02

Convert the matrix into row-reduced echelon form

Consider the matrix \(A = \left[ {\begin{array}{*{20}{c}}4&0&{ - 7}&{ - 7}\\{ - 6}&1&{11}&9\\7&{ - 5}&{10}&{19}\\{ - 1}&2&3&{ - 1}\end{array}} \right]\).

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\[\begin{array}{l} > > {\mathop{\rm A}\nolimits} \,\, = \,\,\left[ {4\,\,\,0\,\,\, - 7\,\,\, - 7;\, - 6\,\,\,1\,\,\,11\,\,\,19;\,\,7\,\, - 5\,\,\,10\,\,\,19;\,\, - 1\,\,\,2\,\,\,3\,\, - 1} \right]\\ > > {\mathop{\rm U}\nolimits} = {\mathop{\rm rref}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{array}\]

\[\left[ {\begin{array}{*{20}{c}}4&0&{ - 7}&{ - 7}\\{ - 6}&1&{11}&9\\7&{ - 5}&{10}&{19}\\{ - 1}&2&3&{ - 1}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}} \right]\]

03

Mark the pivot positions in the matrix

Mark the non-zero leading entries in columns 1, 2, 3, and 4.

There are four pivot positions in the matrix.

04

Determine whether the matrix is invertible

The \(4 \times 4\) matrix \(\left[ {\begin{array}{*{20}{c}}4&0&{ - 7}&{ - 7}\\{ - 6}&1&{11}&9\\7&{ - 5}&{10}&{19}\\{ - 1}&2&3&{ - 1}\end{array}} \right]\) has four pivot positions. It is invertible according to part (c) of the invertible matrix theorem.

Thus, the matrix \(\left[ {\begin{array}{*{20}{c}}4&0&{ - 7}&{ - 7}\\{ - 6}&1&{11}&9\\7&{ - 5}&{10}&{19}\\{ - 1}&2&3&{ - 1}\end{array}} \right]\) is invertible.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free