Chapter 2: Q7Q (page 93)
If a matrix \(A\) is \({\bf{5}} \times {\bf{3}}\) and the product \(AB\)is \({\bf{5}} \times {\bf{7}}\), what is the size of \(B\)?
Short Answer
\(3 \times 7\)
Chapter 2: Q7Q (page 93)
If a matrix \(A\) is \({\bf{5}} \times {\bf{3}}\) and the product \(AB\)is \({\bf{5}} \times {\bf{7}}\), what is the size of \(B\)?
\(3 \times 7\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).
Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?
In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).
\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)
2. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{7}}&{\bf{4}}\end{aligned}} \right)\).
Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)
What do you think about this solution?
We value your feedback to improve our textbook solutions.