Chapter 2: Q6SE (page 93)
Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{ - {\bf{1}}}\end{aligned}} \right)\),\(B = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}\end{aligned}} \right)\).These are Pauli spin matrices used in the study of electron spin in quantum mechanics. Show that \({A^{\bf{2}}} = I\), \({B^{\bf{2}}} = I\), and \(AB = - BA\). Matrices such that \(AB = - BA\) are said to anticommute.
Short Answer
Hence, \({A^2} = I,{B^2} = I,\) and \(AB = - BA\) are proved.