Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{ - {\bf{1}}}\end{aligned}} \right)\),\(B = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}\end{aligned}} \right)\).These are Pauli spin matrices used in the study of electron spin in quantum mechanics. Show that \({A^{\bf{2}}} = I\), \({B^{\bf{2}}} = I\), and \(AB = - BA\). Matrices such that \(AB = - BA\) are said to anticommute.

Short Answer

Expert verified

Hence, \({A^2} = I,{B^2} = I,\) and \(AB = - BA\) are proved.

Step by step solution

01

Compute \({A^{\bf{2}}}\)

\(\begin{aligned}{c}{A^2} = AA\\ = \left( {\begin{aligned}{*{20}{c}}1&0\\0&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\0&{ - 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0\\0&1\end{aligned}} \right)\\{A^2} = I\end{aligned}\)

02

Compute \({B^{\bf{2}}}\)

\(\begin{aligned}{c}{B^2} = BB\\ = \left( {\begin{aligned}{*{20}{c}}0&1\\1&0\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}0&1\\1&0\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0\\0&1\end{aligned}} \right)\\{B^2} = I\end{aligned}\)

03

Check \(AB =  - BA\)

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}1&0\\0&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}0&1\\1&0\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0&1\\{ - 1}&0\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}{c} - BA = - \left( {\begin{aligned}{*{20}{c}}0&1\\1&0\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\0&{ - 1}\end{aligned}} \right)\\ = - \left( {\begin{aligned}{*{20}{c}}0&{ - 1}\\1&0\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0&1\\{ - 1}&0\end{aligned}} \right)\end{aligned}\)

Thus \( - BA = AB\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)

Let \(S = \left( {\begin{aligned}{*{20}{c}}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{aligned}} \right)\). Compute \({S^k}\) for \(k = {\bf{2}},...,{\bf{6}}\).

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\)as\(n \times 1\)matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is a \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

28. If u and v are in \({\mathbb{R}^n}\), how are \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) related? How are \({{\mathop{\rm uv}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) related?

Prove the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).

Let Abe an invertible \(n \times n\) matrix, and let B be an \(n \times p\) matrix. Show that the equation \(AX = B\) has a unique solution \({A^{ - 1}}B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free