Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Unless otherwise specified, assume that all matrices in these exercises are \(n \times n\). Determine which of the matrices in Exercises 1-10 are invertible. Use a few calculations as possible. Justify your answer.

6. \(\left[ {\begin{array}{*{20}{c}}1&{ - 5}&{ - 4}\\0&3&4\\{ - 3}&6&0\end{array}} \right]\)

Short Answer

Expert verified

The matrix \(\left[ {\begin{array}{*{20}{c}}1&{ - 5}&{ - 4}\\0&3&4\\{ - 3}&6&0\end{array}} \right]\) is not invertible.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

State the invertible matrix theorem

Let Abe a square \(n \times n\) matrix. Then the following statements are equivalent.

For a given A, all these statements are either true or false.

  1. Ais an invertible matrix.
  2. Ais row equivalent to the identity matrix of the \(n \times n\) matrix.
  3. Ahas n pivot positions.
  4. The equation Ax = 0 has only the trivial solution.
  5. The columns of A form a linearly independent set.
  6. The linear transformation \(x \mapsto Ax\) is one-to-one.
  7. The equation \(Ax = b\) has at least one solution for each b in \({\mathbb{R}^n}\).
  8. The columns of Aspan \({\mathbb{R}^n}\).
  9. The linear transformation \(x \mapsto Ax\) maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).
  10. There is an \(n \times n\) matrix Csuch that CA = I.
  11. There is an \(n \times n\) matrix Dsuch that DA = I.
  12. \({A^T}\) is an invertible matrix.
02

Apply the row operation

At row three, multiply row one by 3 and add it to row three.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 5}&{ - 4}\\0&3&4\\0&{ - 9}&{ - 12}\end{array}} \right]\)

At row three, multiply row two by 3 and add it to row three.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 5}&{ - 4}\\0&3&4\\0&0&0\end{array}} \right]\)

03

Determine whether the matrix is invertible

According to part (b) of the invertible matrix theorem, the matrix is not row equivalent to the identity matrix.

Thus, the matrix\(\left[ {\begin{array}{*{20}{c}}1&{ - 5}&{ - 4}\\0&3&4\\{ - 3}&6&0\end{array}} \right]\)is not invertible.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M] Suppose memory or size restrictions prevent your matrix program from working with matrices having more than 32 rows and 32 columns, and suppose some project involves \(50 \times 50\) matrices A and B. Describe the commands or operations of your program that accomplish the following tasks.

a. Compute \(A + B\)

b. Compute \(AB\)

c. Solve \(Ax = b\) for some vector b in \({\mathbb{R}^{50}}\), assuming that \(A\) can be partitioned into a \(2 \times 2\) block matrix \(\left[ {{A_{ij}}} \right]\), with \({A_{11}}\) an invertible \(20 \times 20\) matrix, \({A_{22}}\) an invertible \(30 \times 30\) matrix, and \({A_{12}}\) a zero matrix. [Hint: Describe appropriate smaller systems to solve, without using any matrix inverse.]

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Compute \(A - {\bf{5}}{I_{\bf{3}}}\) and \(\left( {{\bf{5}}{I_{\bf{3}}}} \right)A\)

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{9}}&{ - {\bf{1}}}&{\bf{3}}\\{ - {\bf{8}}}&{\bf{7}}&{ - {\bf{6}}}\\{ - {\bf{4}}}&{\bf{1}}&{\bf{8}}\end{aligned}} \right)\)

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

38. Use at least three pairs of random \(4 \times 4\) matrices Aand Bto test the equalities \({\left( {A + B} \right)^T} = {A^T} + {B^T}\) and \({\left( {AB} \right)^T} = {A^T}{B^T}\). (See Exercise 37.) Report your conclusions. (Note:Most matrix programs use \(A'\) for \({A^{\bf{T}}}\).

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free