Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{0}}\\{\bf{3}}&{\bf{5}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}\\{\bf{2}}&{ - {\bf{1}}}\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}0&{14}\\{ - 3}&{ - 9}\\{13}&4\end{aligned}} \right)\)

Step by step solution

01

Find the value of \(A{b_{\bf{1}}}\)

Multiply matrix \(A\) with the first column of matrix \(B\).

\(\begin{aligned}{c}A{b_1} = \left( {\begin{aligned}{*{20}{c}}4&{ - 2}\\{ - 3}&0\\3&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1\\2\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4 \times 1 + \left( { - 2} \right) \times 2}\\{\left( { - 3} \right) \times 1 + 0}\\{3 \times 1 + 5 \times 2}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0\\{ - 3}\\{13}\end{aligned}} \right)\end{aligned}\)

02

Find the value of \(A{b_{\bf{2}}}\)

Multiply matrix \(A\) with the second column of matrix \(B\).

\(\begin{aligned}{c}A{b_2} = \left( {\begin{aligned}{*{20}{c}}4&{ - 2}\\{ - 3}&0\\3&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4 \times 3 + \left( { - 2} \right) \times \left( { - 1} \right)}\\{\left( { - 3} \right) \times 3 + 0}\\{3 \times 3 + 5 \times \left( { - 1} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{14}\\{ - 9}\\4\end{aligned}} \right)\end{aligned}\)

03

Write the product \(AB\)

The product \(AB\) can be written as follows:

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}{A{b_1}}&{A{b_2}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0&{14}\\{ - 3}&{ - 9}\\{13}&4\end{aligned}} \right)\end{aligned}\)

04

Find the product \(AB\) using row-column rule

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}4&{ - 2}\\{ - 3}&0\\3&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&3\\2&{ - 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4 \times 1 + \left( { - 2} \right) \times 2}&{4 \times 3 + \left( { - 2} \right) \times \left( { - 1} \right)}\\{\left( { - 3} \right) \times 1 + 0}&{\left( { - 3} \right) \times 3 + 0}\\{3 \times 1 + 5 \times 2}&{3 \times 3 + 5 \times \left( { - 1} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0&{14}\\{ - 3}&{ - 9}\\{13}&4\end{aligned}} \right)\end{aligned}\)

So, \(AB = \left( {\begin{aligned}{*{20}{c}}0&{14}\\{ - 3}&{ - 9}\\{13}&4\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

The inverse of \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\C&I&{\bf{0}}\\A&B&I\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\Z&I&{\bf{0}}\\X&Y&I\end{array}} \right]\). Find X, Y, and Z.

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free