Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

Short Answer

Expert verified

The solutions are \({x_1} = 7\) and \({x_2} = - 9\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the matrix form

The given system is equivalent to \(Ax = b\).

Here, \(A = \left( {\begin{aligned}{*{20}{c}}8&6\\5&4\end{aligned}} \right),{\rm{ }}x = \left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right),\) and \(b = \left( {\begin{aligned}{*{20}{c}}2\\{ - 1}\end{aligned}} \right)\).

02

Write the inverse obtained in Exercise 1

From Exercise 1, \({\left( {\begin{aligned}{*{20}{c}}8&6\\5&4\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}2&{ - 3}\\{ - 2.5}&4\end{aligned}} \right)\).

03

Express the solution

\(\begin{aligned}{c}x = {A^{ - 1}}b\\ = \left( {\begin{aligned}{*{20}{c}}2&{ - 3}\\{ - 2.5}&4\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2\\{ - 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4 + 3}\\{ - 5 - 4}\end{aligned}} \right)\\x = \left( {\begin{aligned}{*{20}{c}}7\\{ - 9}\end{aligned}} \right)\end{aligned}\)

Thus, \({x_1} = 7\) and \({x_2} = - 9\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

Prove Theorem 2(b) and 2(c). Use the row-column rule. The \(\left( {i,j} \right)\)- entry in \(A\left( {B + C} \right)\) can be written as \({a_{i1}}\left( {{b_{1j}} + {c_{1j}}} \right) + ... + {a_{in}}\left( {{b_{nj}} + {c_{nj}}} \right)\) or \(\sum\limits_{k = 1}^n {{a_{ik}}\left( {{b_{kj}} + {c_{kj}}} \right)} \).

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free