Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

Short Answer

Expert verified

The solutions are \({x_1} = 7\) and \({x_2} = - 9\).

Step by step solution

01

Write the matrix form

The given system is equivalent to \(Ax = b\).

Here, \(A = \left( {\begin{aligned}{*{20}{c}}8&6\\5&4\end{aligned}} \right),{\rm{ }}x = \left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\end{aligned}} \right),\) and \(b = \left( {\begin{aligned}{*{20}{c}}2\\{ - 1}\end{aligned}} \right)\).

02

Write the inverse obtained in Exercise 1

From Exercise 1, \({\left( {\begin{aligned}{*{20}{c}}8&6\\5&4\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}2&{ - 3}\\{ - 2.5}&4\end{aligned}} \right)\).

03

Express the solution

\(\begin{aligned}{c}x = {A^{ - 1}}b\\ = \left( {\begin{aligned}{*{20}{c}}2&{ - 3}\\{ - 2.5}&4\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2\\{ - 1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{4 + 3}\\{ - 5 - 4}\end{aligned}} \right)\\x = \left( {\begin{aligned}{*{20}{c}}7\\{ - 9}\end{aligned}} \right)\end{aligned}\)

Thus, \({x_1} = 7\) and \({x_2} = - 9\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain why the columns of an \(n \times n\) matrix Aspan \({\mathbb{R}^{\bf{n}}}\) when

Ais invertible. (Hint:Review Theorem 4 in Section 1.4.)

Let Ube the \({\bf{3}} \times {\bf{2}}\) cost matrix described in Example 6 of Section 1.8. The first column of Ulists the costs per dollar of output for manufacturing product B, and the second column lists the costs per dollar of output for product C. (The costs are categorized as materials, labor, and overhead.) Let \({q_1}\) be a vector in \({\mathbb{R}^{\bf{2}}}\) that lists the output (measured in dollars) of products B and C manufactured during the first quarter of the year, and let \({q_{\bf{2}}}\), \({q_{\bf{3}}}\) and \({q_{\bf{4}}}\) be the analogous vectors that list the amounts of products B and C manufactured in the second, third, and fourth quarters, respectively. Give an economic description of the data in the matrix UQ, where \(Q = \left( {\begin{aligned}{*{20}{c}}{{{\bf{q}}_1}}&{{{\bf{q}}_2}}&{{{\bf{q}}_3}}&{{{\bf{q}}_4}}\end{aligned}} \right)\).

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

Suppose \(AD = {I_m}\) (the \(m \times m\) identity matrix). Show that for any b in \({\mathbb{R}^m}\), the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) has a solution. (Hint: Think about the equation \(AD{\mathop{\rm b}\nolimits} = {\mathop{\rm b}\nolimits} \).) Explain why Acannot have more rows than columns.

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free