Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{4}}}\\{\bf{7}}&{ - {\bf{8}}}\end{aligned}} \right)\).

Short Answer

Expert verified

The inverse of \(\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)\) is \(\left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{ - 1.75}&{0.75}\end{aligned}} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Check if the matrix is invertible

\(\begin{aligned}{c}\det \left( {\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)} \right) = 3\left( { - 8} \right) - \left( { - 4} \right)\left( 7 \right)\\ = - 24 + 28\\\det \left( {\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)} \right) = 4 \ne 0\end{aligned}\)

This implies that\(\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)\)is invertible.

02

Use the formula

\({\left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\) when \(ad - bc \ne 0\).

03

Write the inverse matrix

\(\begin{aligned}{c}{\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)^{ - 1}} = \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 8}&4\\{ - 7}&3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{ - \frac{7}{4}}&{\frac{3}{4}}\end{aligned}} \right)\\{\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{ - 1.75}&{0.75}\end{aligned}} \right)\end{aligned}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.

3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free