Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{4}}}\\{\bf{7}}&{ - {\bf{8}}}\end{aligned}} \right)\).

Short Answer

Expert verified

The inverse of \(\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)\) is \(\left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{ - 1.75}&{0.75}\end{aligned}} \right)\).

Step by step solution

01

Check if the matrix is invertible

\(\begin{aligned}{c}\det \left( {\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)} \right) = 3\left( { - 8} \right) - \left( { - 4} \right)\left( 7 \right)\\ = - 24 + 28\\\det \left( {\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)} \right) = 4 \ne 0\end{aligned}\)

This implies that\(\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)\)is invertible.

02

Use the formula

\({\left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\) when \(ad - bc \ne 0\).

03

Write the inverse matrix

\(\begin{aligned}{c}{\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)^{ - 1}} = \frac{1}{4}\left( {\begin{aligned}{*{20}{c}}{ - 8}&4\\{ - 7}&3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{ - \frac{7}{4}}&{\frac{3}{4}}\end{aligned}} \right)\\{\left( {\begin{aligned}{*{20}{c}}3&{ - 4}\\7&{ - 8}\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{ - 1.75}&{0.75}\end{aligned}} \right)\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

Assume \(A - s{I_n}\) is invertible and view (8) as a system of two matrix equations. Solve the top equation for \({\bf{x}}\) and substitute into the bottom equation. The result is an equation of the form \(W\left( s \right){\bf{u}} = {\bf{y}}\), where \(W\left( s \right)\) is a matrix that depends upon \(s\). \(W\left( s \right)\) is called the transfer function of the system because it transforms the input \({\bf{u}}\) into the output \({\bf{y}}\). Find \(W\left( s \right)\) and describe how it is related to the partitioned system matrix on the left side of (8). See Exercise 15.

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

Describe in words what happens when you compute \({A^{\bf{5}}}\), \({A^{{\bf{10}}}}\), \({A^{{\bf{20}}}}\), and \({A^{{\bf{30}}}}\) for \(A = \left( {\begin{aligned}{*{20}{c}}{1/6}&{1/2}&{1/3}\\{1/2}&{1/4}&{1/4}\\{1/3}&{1/4}&{5/12}\end{aligned}} \right)\).

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

38. Use at least three pairs of random \(4 \times 4\) matrices Aand Bto test the equalities \({\left( {A + B} \right)^T} = {A^T} + {B^T}\) and \({\left( {AB} \right)^T} = {A^T}{B^T}\). (See Exercise 37.) Report your conclusions. (Note:Most matrix programs use \(A'\) for \({A^{\bf{T}}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free