Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Let \(D = \left( {\begin{aligned}{*{20}{c}}{.{\bf{0040}}}&{.{\bf{0030}}}&{.{\bf{0010}}}&{.{\bf{0005}}}\\{.{\bf{0030}}}&{.{\bf{0050}}}&{.{\bf{0030}}}&{.{\bf{0010}}}\\{.{\bf{0010}}}&{.{\bf{0030}}}&{.{\bf{0050}}}&{.{\bf{0030}}}\\{.{\bf{0005}}}&{.{\bf{0010}}}&{.{\bf{0030}}}&{.{\bf{0040}}}\end{aligned}} \right)\) be a flexibility matrix for an elastic beam with four points at which force is applied. Units are centimeters per newton of force. Meaurements at the four points show deflections of .08, .12, and .12 cm. Determine the forces at the four points.

Short Answer

Expert verified

\(\left( {12,\,1.5,\,21.5,\,12} \right)\;\;{\rm{newtons}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the inverse of matrix D

Let \(D = \left( {\begin{aligned}{*{20}{c}}{.0040}&{.0030}&{.0010}&{.0005}\\{.0030}&{.0050}&{.0030}&{.0010}\\{.0010}&{.0030}&{.0050}&{.0030}\\{.0005}&{.0010}&{.0030}&{.0040}\end{aligned}} \right)\).

Use the code in MATLAB to find the inverse of D.

\( > > \,\,D = \left( \begin{aligned}{l}\begin{aligned}{*{20}{c}}{.0040}&{.0030}&{.0010}&{.0005;\,\,\begin{aligned}{*{20}{c}}{.0030}&{.0050}&{.0030}&{.0010;\,\,}\end{aligned}}\end{aligned}\\\begin{aligned}{*{20}{c}}{.0010}&{.0030}&{.0050}&{.0030;\,\,\begin{aligned}{*{20}{c}}{.0005}&{.0010}&{.0030}&{.0040}\end{aligned}}\end{aligned}\end{aligned} \right)\)

\( > > {\rm{U}} = {\rm{Inv}}\left( D \right)\)

So, the inverse matrix is

\({D^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}{533.333}&{ - 433.333}&{233.333}&{ - 133.333}\\{ - 433.333}&{695.833}&{ - 470.833}&{233.333}\\{233.333}&{ - 470.833}&{695.833}&{ - 433.333}\\{ - 133.333}&{233.333}&{ - 433.333}&{533.333}\end{aligned}} \right)\).

02

Solve the equation \(f = {D^{ - 1}}y\)

The deflection matrix is \(\left( {\begin{aligned}{*{20}{c}}{.08}\\{.12}\\{.16}\\{.12}\end{aligned}} \right)\).

Use the equation \(f = {D^{ - 1}}y\).

\(\begin{aligned}{c}f = \left( {\begin{aligned}{*{20}{c}}{533.333}&{ - 433.333}&{233.333}&{ - 133.333}\\{ - 433.333}&{695.833}&{ - 470.833}&{233.333}\\{233.333}&{ - 470.833}&{695.833}&{ - 433.333}\\{ - 133.333}&{233.333}&{ - 433.333}&{533.333}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{.08}\\{.12}\\{.16}\\{.12}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{12}\\{1.5}\\{21.5}\\{12}\end{aligned}} \right)\end{aligned}\)

So, the forces required to produce deflection at points 1, 2, 3 and 4 are \(\left( {12,\,1.5,\,21.5,\,12} \right)\;\;{\rm{newtons}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

8. \[\left[ {\begin{array}{*{20}{c}}A&B\\{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&Y&Z\\{\bf{0}}&{\bf{0}}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&I\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free