Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Describe in words what happens when you compute \({A^{\bf{5}}}\), \({A^{{\bf{10}}}}\), \({A^{{\bf{20}}}}\), and \({A^{{\bf{30}}}}\) for \(A = \left( {\begin{aligned}{*{20}{c}}{1/6}&{1/2}&{1/3}\\{1/2}&{1/4}&{1/4}\\{1/3}&{1/4}&{5/12}\end{aligned}} \right)\).

Short Answer

Expert verified

As the power increases, the matrix becomes more like \(\left( {\begin{aligned}{*{20}{c}}{1/3}&{1/3}&{1/3}\\{1/3}&{1/3}&{1/3}\\{1/3}&{1/3}&{1/3}\end{aligned}} \right)\).

Step by step solution

01

Create the matrix

Consider the matrix\(A = \left( {\begin{aligned}{*{20}{c}}{1/6}&{1/2}&{1/3}\\{1/2}&{1/4}&{1/4}\\{1/3}&{1/4}&{5/12}\end{aligned}} \right)\).

Write the above matrix in MATLAB command.

\( > > {\rm{A}} = \left( {{\rm{1/6 1/2 1/3; 1/2 1/4 1/4; 1/3 1/4 5/12}}} \right){\rm{;}}\)

02

Obtain the matrix by using the MATLAB command

Obtain the matrix\({A^5}\)by using the MATLAB command shown below:

\( > > A\^{\bf{5}}\)

The output matrix is shown below:

\({A^5} = \left( {\begin{aligned}{*{20}{c}}{0.331822273662551}&{0.334587191368025}&{0.333590534979424}\\{0.334587191358025}&{0.332320601851852}&{0.333092206790123}\\{0.333590534979424}&{0.333092206790123}&{0.333317258230453}\end{aligned}} \right)\)

Thus, \({A^5} = \left( {\begin{aligned}{*{20}{c}}{0.331822273662551}&{0.334587191368025}&{0.333590534979424}\\{0.334587191358025}&{0.332320601851852}&{0.333092206790123}\\{0.333590534979424}&{0.333092206790123}&{0.333317258230453}\end{aligned}} \right)\).

03

Obtain the matrix by using the MATLAB command

Obtain the matrix\({A^{10}}\)by using the MATLAB command shown below:

\( > > A\^10\)

The output matrix is shown below:

\({A^{10}} = \left( {\begin{aligned}{*{20}{c}}{0.333337254997295}&{0.333330106839401}&{0.333332638213305}\\{0.333330106839401}&{0.333335989260343}&{0.333333903900257}\\{0.333332638213305}&{0.333333903900257}&{0.333333457886439}\end{aligned}} \right)\)

Thus, \({A^{10}} = \left( {\begin{aligned}{*{20}{c}}{0.333337254997295}&{0.333330106839401}&{0.333332638213305}\\{0.333330106839401}&{0.333335989260343}&{0.333333903900257}\\{0.333332638213305}&{0.333333903900257}&{0.333333457886439}\end{aligned}} \right)\).

04

Obtain the matrix by using the MATLAB command

Obtain the matrix\({A^{20}}\)by using the MATLAB command shown below:

\( > > A\^{\bf{20}}\)

The output matrix is shown below:

\({A^{20}} = \left( {\begin{aligned}{*{20}{c}}{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\end{aligned}} \right)\)

Thus, \({A^{20}} = \left( {\begin{aligned}{*{20}{c}}{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\end{aligned}} \right)\).

05

Obtain the matrix by using the MATLAB command

Obtain the matrix\({A^{30}}\)by using the MATLAB command shown below:

\( > > A\^{\bf{30}}\)

The output matrix is shown below:

\({A^{30}} \approx \left( {\begin{aligned}{*{20}{c}}{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\end{aligned}} \right)\)

Thus,\({A^{30}} = \left( {\begin{aligned}{*{20}{c}}{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\\{0.33333}&{0.33333}&{0.33333}\end{aligned}} \right)\).

It is observed that as the power increases, the matrix becomes more like \(\left( {\begin{aligned}{*{20}{c}}{0.3333}&{0.3333}&{0.3333}\\{0.3333}&{0.3333}&{0.

3333}\\{0.3333}&{0.3333}&{0.3333}\end{aligned}} \right)\)or \(\left( {\begin{aligned}{*{20}{c}}{1/3}&{1/3}&{1/3}\\{1/3}&{1/3}&{1/3}\\{1/3}&{1/3}&{1/3}\end{aligned}} \right)\).

All the entries in\({A^{20}}\)and\({A^{30}}\)approach to 0.3333.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let Ube the \({\bf{3}} \times {\bf{2}}\) cost matrix described in Example 6 of Section 1.8. The first column of Ulists the costs per dollar of output for manufacturing product B, and the second column lists the costs per dollar of output for product C. (The costs are categorized as materials, labor, and overhead.) Let \({q_1}\) be a vector in \({\mathbb{R}^{\bf{2}}}\) that lists the output (measured in dollars) of products B and C manufactured during the first quarter of the year, and let \({q_{\bf{2}}}\), \({q_{\bf{3}}}\) and \({q_{\bf{4}}}\) be the analogous vectors that list the amounts of products B and C manufactured in the second, third, and fourth quarters, respectively. Give an economic description of the data in the matrix UQ, where \(Q = \left( {\begin{aligned}{*{20}{c}}{{{\bf{q}}_1}}&{{{\bf{q}}_2}}&{{{\bf{q}}_3}}&{{{\bf{q}}_4}}\end{aligned}} \right)\).

Prove the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).

Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

Generalize the idea of Exercise 21(a) [not 21(b)] by constructing a \(5 \times 5\) matrix \(M = \left[ {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right]\) such that \({M^2} = I\). Make C a nonzero \(2 \times 3\) matrix. Show that your construction works.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free