Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Unless otherwise specified, assume that all matrices in these exercises are \(n \times n\). Determine which of the matrices in Exercises 1-10 are invertible. Use a few calculations as possible. Justify your answer.

3.\(\left( {\begin{aligned}{*{20}{c}}5&0&0\\{ - 3}&{ - 7}&0\\8&5&{ - 1}\end{aligned}} \right)\)

Short Answer

Expert verified

The matrix \(\left( {\begin{aligned}{*{20}{c}}5&0&0\\{ - 3}&{ - 7}&0\\8&5&{ - 1}\end{aligned}} \right)\) is invertible.

Step by step solution

01

State the invertible matrix theorem

Let Abe a square \(n \times n\) matrix. Then the following statements are equivalent.

For a given A, all these statements are either true or false.

  1. Ais an invertible matrix.
  2. Ais row equivalent to the identity matrix of the \(n \times n\) matrix.
  3. Ahas n pivot positions.
  4. The equation Ax = 0 has only a trivial solution.
  5. The columns of A form a linearly independent set.
  6. The linear transformation \(x \mapsto Ax\) is one-to-one.
  7. The equation \(Ax = b\) has at least one solution for each b in \({\mathbb{R}^n}\).
  8. The columns of Aspan \({\mathbb{R}^n}\).
  9. The linear transformation \(x \mapsto Ax\) maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).
  10. There is an \(n \times n\) matrix Csuch that CA = I.
  11. There is an \(n \times n\) matrix Dsuch that DA = I.
  12. \({A^T}\) is an invertible matrix.
02

Apply the row operation

At row one, multiply row one by \(\frac{1}{5}\).

\(\left( {\begin{aligned}{*{20}{c}}1&0&0\\{ - 3}&{ - 7}&0\\8&5&{ - 1}\end{aligned}} \right)\)

At row two, multiply row one by 3 and add it to row two.

\(\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{ - 7}&0\\8&5&{ - 1}\end{aligned}} \right)\)

At row three, multiply row one by 8 and subtract it from row three.

\(\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{ - 7}&0\\0&5&{ - 1}\end{aligned}} \right)\)

03

Determine whether the matrix is invertible

A \(3 \times 3\) matrix has three pivot positions. It is invertible according to part (c) of the invertible matrix theorem.

Thus, the matrix \(\left( {\begin{aligned}{*{20}{c}}5&0&0\\{ - 3}&{ - 7}&0\\8&5&{ - 1}\end{aligned}} \right)\) is invertible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\)as\(n \times 1\)matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is a \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

28. If u and v are in \({\mathbb{R}^n}\), how are \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) related? How are \({{\mathop{\rm uv}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) related?

(M) Read the documentation for your matrix program, and write the commands that will produce the following matrices (without keying in each entry of the matrix).

  1. A \({\bf{5}} \times {\bf{6}}\) matrix of zeros
  2. A \({\bf{3}} \times {\bf{5}}\) matrix of ones
  3. The \({\bf{6}} \times {\bf{6}}\) identity matrix
  4. A \({\bf{5}} \times {\bf{5}}\) diagonal matrix, with diagonal entries 3, 5, 7, 2, 4

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{4}}}&{\bf{6}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{4}}\\{\bf{5}}&{\bf{5}}\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}&{ - {\bf{2}}}\\{\bf{3}}&{\bf{1}}\end{aligned}} \right)\). Verfiy that \(AB = AC\) and yet \(B \ne C\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free