Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

Short Answer

Expert verified

The inverse of \(\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)\) is \(\left( {\begin{aligned}{*{20}{c}}1&1\\{ - 1.4}&{ - 1.6}\end{aligned}} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Check if the matrix is invertible

\(\begin{aligned}{c}\det \left( {\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)} \right) = 8\left( { - 5} \right) - 5\left( { - 7} \right)\\ = - 40 + 35\\\det \left( {\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)} \right) = - 5 \ne 0\end{aligned}\)

This implies that\(\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)\)is invertible.

02

Use the formula

\({\left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\) when \(ad - bc \ne 0\).

03

Write the inverse matrix

\(\begin{aligned}{c}{\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)^{ - 1}} = \frac{1}{{ - 5}}\left( {\begin{aligned}{*{20}{c}}{ - 5}&{ - 5}\\7&8\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&1\\{ - \frac{7}{5}}&{ - \frac{8}{5}}\end{aligned}} \right)\\{\left( {\begin{aligned}{*{20}{c}}8&5\\{ - 7}&{ - 5}\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}1&1\\{ - 1.4}&{ - 1.6}\end{aligned}} \right)\end{aligned}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free