Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the determinant in Exercise 3 using a cofactor expansion across the first row. Also, compute the determinant by a cofactor expansion down the second column.

3. \(\left| {\begin{aligned}{*{20}{c}}{\bf{2}}&{ - {\bf{2}}}&{\bf{3}}\\{\bf{3}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{3}}&{ - {\bf{1}}}\end{aligned}} \right|\)

Short Answer

Expert verified

Thus, \(\left| {\begin{aligned}{*{20}{c}}2&{ - 2}&3\\3&1&2\\1&3&{ - 1}\end{aligned}} \right| = 0\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the determinant formula

The determinant computed by acofactor expansion across the ith row is

\(\det A = {a_{i1}}{C_{i1}} + {a_{i2}}{C_{i2}} + \cdots + {a_{in}}{C_{in}}\).

The determinant computed by a cofactor expansion down the jth column is

\(\det A = {a_{1j}}{C_{1j}} + {a_{2j}}{C_{2j}} + \cdots + {a_{nj}}{C_{nj}}\).

Here, A is an \(n \times n\) matrix, and \({C_{ij}} = {\left( { - 1} \right)^{i + j}}{A_{ij}}\).

02

Use the cofactor expansion across the first row

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}2&{ - 2}&3\\3&1&2\\1&3&{ - 1}\end{aligned}} \right| = {a_{11}}{C_{11}} + {a_{12}}{C_{12}} + {a_{13}}{C_{13}}\\ = {a_{11}}{\left( { - 1} \right)^{1 + 1}}\det {A_{11}} + {a_{12}}{\left( { - 1} \right)^{1 + 2}}\det {A_{12}} + {a_{13}}{\left( { - 1} \right)^{1 + 3}}\det {A_{13}}\\ = 2\left| {\begin{aligned}{*{20}{c}}1&2\\3&{ - 1}\end{aligned}} \right| - \left( { - 2} \right)\left| {\begin{aligned}{*{20}{c}}3&2\\1&{ - 1}\end{aligned}} \right| + 3\left| {\begin{aligned}{*{20}{c}}3&1\\1&3\end{aligned}} \right|\\ = 2\left( { - 7} \right) + 2\left( { - 5} \right) + 3\left( 8 \right)\\ = - 14 - 10 + 24\\ = 0\end{aligned}\)

03

Use the cofactor expansion down the second column

\(\begin{aligned}{c}\left| {\begin{aligned}{*{20}{c}}2&{ - 2}&3\\3&1&2\\1&3&{ - 1}\end{aligned}} \right| = {a_{12}}{C_{12}} + {a_{22}}{C_{22}} + {a_{32}}{C_{32}}\\ = {a_{12}}{\left( { - 1} \right)^{1 + 2}}\det {A_{12}} + {a_{22}}{\left( { - 1} \right)^{2 + 2}}\det {A_{22}} + {a_{32}}{\left( { - 1} \right)^{3 + 2}}\det {A_{32}}\\ = - \left( { - 2} \right)\left| {\begin{aligned}{*{20}{c}}3&2\\1&{ - 1}\end{aligned}} \right| + 1\left| {\begin{aligned}{*{20}{c}}2&3\\1&{ - 1}\end{aligned}} \right| - 3\left| {\begin{aligned}{*{20}{c}}2&3\\3&2\end{aligned}} \right|\\ = 2\left( { - 5} \right) + 1\left( { - 5} \right) - 3\left( { - 5} \right)\\ = - 10 - 5 + 15\\ = 0\end{aligned}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free