Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(D = \left( {\begin{aligned}{*{20}{c}}{.{\bf{005}}}&{.{\bf{002}}}&{.{\bf{001}}}\\{.{\bf{002}}}&{.{\bf{004}}}&{.{\bf{002}}}\\{.{\bf{001}}}&{.{\bf{002}}}&{.{\bf{005}}}\end{aligned}} \right)\) be a flexibility matrix, with flexibility measured in inches per pound. Suppose that forces of 30, 50, and 20 lb are applied at points 1, 2, and, 3, respectively, in figure 1 of Example 3. Find the corresponding deflections.

Short Answer

Expert verified

0.27 in, 0.30 in, and 0.23 in

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the force matrix

The force matrix is \(f = \left( {\begin{aligned}{*{20}{c}}{30}\\{50}\\{20}\end{aligned}} \right)\).

02

Find the corresponding deflection

Solve the equation \(y = Df\) to find the corresponding deflection.

\(\begin{aligned}{c}y = \left( {\begin{aligned}{*{20}{c}}{.005}&{.002}&{.001}\\{.002}&{.004}&{.002}\\{.001}&{.002}&{.005}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{30}\\{50}\\{20}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{0.15 + 0.1 + 0.02}\\{0.06 + 0.2 + 0.04}\\{0.03 + 0.1 + 0.1}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{0.27}\\{0.30}\\{0.23}\end{aligned}} \right)\end{aligned}\)

So, the deflections are 0.27 in, 0.30 in, and 0.23 in at points 1, 2, and 3, respectively.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{4}}}&{\bf{6}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{4}}\\{\bf{5}}&{\bf{5}}\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}&{ - {\bf{2}}}\\{\bf{3}}&{\bf{1}}\end{aligned}} \right)\). Verfiy that \(AB = AC\) and yet \(B \ne C\).

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free