Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

Short Answer

Expert verified

It is verified that\(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\).

The test fails for \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^2}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the MATLAB commands for the matrixa

To create a random matrix of the order\(m \times m\)with random entries, use the command\(rand\left( {m,m} \right)\)and distribute the entries between 0 and 1.

To create an identity matrix of the order \(m \times m\), use the command \(eye\left( {m,m} \right)\).

02

Verify the identity by using MATLAB

To verify\(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\), compute\(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\).

If the result is 0, then it is true.

Create a random matrix\(A\)by using MATLAB command as shown below:

\( > > A = rand\left( {4,4} \right)\)

The output of matrix A is shown below:

\({\rm{A}} = \left( {\begin{aligned}{*{20}{c}}{0.824168}&{0.893582}&{0.159004}&{0.445958}\\{0.989134}&{0.862390}&{0.286881}&{0.744199}\\{0.336397}&{0.931747}&{0.063368}&{0.620395}\\{0.547681}&{0.558067}&{0.418710}&{0.642377}\end{aligned}} \right)\)

Create a random matrix\(I\)by using the MATLAB command shown below:

\( > > I = eye\left( {4,4} \right)\)

The output of identity matrix I is shown below:

\({\rm{I}} = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{aligned}} \right)\)

Now, run the command\(\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right)\).

\(\begin{aligned}{l}\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right) \sim \left( {\begin{aligned}{*{20}{c}}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{aligned}} \right)\\\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right) \sim {\bf{0}}\end{aligned}\)

It is observed that the difference is the zero matrix.

Hence, \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\) is verified.

03

Verify the identity by using MATLAB

Create a random matrix\(A\)by using the MATLAB command shown below:

\( > > A = rand\left( {4,4} \right)\)

The output of matrix A is shown below:

\({\rm{A}} = \left( {\begin{aligned}{*{20}{c}}{0.9658}&{0.6021}&{0.9201}&{0.9057}\\{0.2677}&{0.4002}&{0.9679}&{0.4938}\\{0.3435}&{0.9403}&{0.3527}&{0.6456}\\{0.3338}&{0.1830}&{0.4449}&{0.4819}\end{aligned}} \right)\)

Now, run the command\(\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right)\).

\(\begin{aligned}{l}\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right) \sim \left( {\begin{aligned}{*{20}{c}}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{aligned}} \right)\\\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right) \sim {\bf{0}}\end{aligned}\)

It is observed that the difference is the zero matrix.

Hence, \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\) is verified.

04

Verify the identity by using MATLAB

Create a random matrix\(A\)by using the MATLAB command shown below:

\( > > A = rand\left( {4,4} \right)\)

The output of matrix A is shown below:

\({\rm{A}} = \left( {\begin{aligned}{*{20}{c}}{0.956872}&{0.087905}&{0.498262}&{0.205285}\\{0.701973}&{0.963660}&{0.874754}&{0.934861}\\{0.050754}&{0.870641}&{0.594241}&{0.037656}\\{0.066208}&{0.183451}&{0.639346}&{0.603038}\end{aligned}} \right)\)

Now, run the command\(\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right)\).

\(\begin{aligned}{l}\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right) \sim \left( {\begin{aligned}{*{20}{c}}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{aligned}} \right)\\\left( {A + I} \right)*\left( {A - I} \right) - \left( {A*A - I} \right) \sim {\bf{0}}\end{aligned}\)

It is observed that the difference is the zero matrix.

Hence, \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\) is verified.

05

Verify the identity by using MATLAB

The equation\(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^2}\)is true if the MATLAB command is verified, such that\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) = {\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

Create a random matrix\(A\)by using the MATLAB command shown below:

\( > > A = rand\left( {4,4} \right)\)

The output of matrix A is shown below:

\({\rm{A}} = \left( {\begin{aligned}{*{20}{c}}{0.764775}&{0.912129}&{0.556113}&{0.865497}\\{0.712612}&{0.091724}&{0.426475}&{0.869771}\\{0.725032}&{0.260828}&{0.776040}&{0.455232}\\{0.776332}&{0.674258}&{0.884017}&{0.544782}\end{aligned}} \right)\)

Create a random matrix B by using the MATLAB command shown below:

\( > > B = rand\left( {4,4} \right)\)

The output of matrix B is shown below:

\({\rm{B}} = \left( {\begin{aligned}{*{20}{c}}{0.287606}&{0.664505}&{0.591512}&{0.415605}\\{0.073937}&{0.797648}&{0.194120}&{0.250417}\\{0.853475}&{0.497764}&{0.698901}&{0.853589}\\{0.890650}&{0.720478}&{0.258672}&{0.832795}\end{aligned}} \right)\)

Now, run the command\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right)\).

\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) = \left( {\begin{aligned}{*{20}{c}}{1.2153}&{ - 1.1835}&{1.2187}&{0.6238}\\{0.7356}&{ - 0.6319}&{0.9272}&{0.3349}\\{0.8986}&{ - 0.5546}&{1.0526}&{0.2155}\\{1.3820}&{ - 0.9062}&{1.2147}&{0.7618}\end{aligned}} \right)\)

Now, run the comment \({\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

\({\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}} = \left( {\begin{aligned}{*{20}{c}}{1.303140}&{0.194832}&{1.190951}&{1.042966}\\{1.125839}&{0.393674}&{1.136243}&{0.759805}\\{0.017409}&{ - 0.732454}&{0.208378}&{ - 0.331142}\\{0.866151}&{ - 0.527435}&{0.824016}&{0.492658}\end{aligned}} \right)\)

It is observed that\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) \ne {\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

Hence, \(\left( {A + B} \right)\left( {A - B} \right) \ne {A^2} - {B^2}\).

06

Verify the identity by using MATLAB

The equation\(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^2}\)is true if the MATLAB command is verified, such that\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) = {\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

Create a random matrix\(A\)by using the MATLAB command shown below:

\( > > A = rand\left( {4,4} \right)\)

The output of matrix A is shown below:

\({\rm{A}} = \left( {\begin{aligned}{*{20}{c}}{0.334451}&{0.130075}&{0.547364}&{0.702031}\\{0.973148}&{0.339488}&{0616595}&{0.011231}\\{0.421252}&{0.319474}&{0.111543}&{0.286304}\\{0.223701}&{0.976674}&{0.372937}&{0.549162}\end{aligned}} \right)\)

Create a random matrix B by using the MATLAB command shown below:

\( > > B = rand\left( {4,4} \right)\)

The output of matrix B is shown below:

\({\rm{B}} = \left( {\begin{aligned}{*{20}{c}}{0.6370}&{0.1100}&{0.7787}&{0.6714}\\{0.3517}&{0.3742}&{0.3040}&{0.9532}\\{0.4099}&{0.2457}&{0.8818}&{0.3172}\\{0.7372}&{0.3112}&{0.1004}&{0.9257}\end{aligned}} \right)\)

Now, run the command\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right)\).

\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 0.8349}&{1.0230}&{ - 0.7968}&{ - 0.7546}\\{ - 0.4421}&{0.7115}&{ - 0.5297}&{ - 1.0234}\\{ - 0.1989}&{0.4719}&{ - 0.6163}&{ - 0.7649}\\{ - 0.2424}&{0.9909}&{0.2176}&{ - 1.7538}\end{aligned}} \right)\)

And run the command \({\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

\({\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}} = \left( {\begin{aligned}{*{20}{c}}{ - 6.3258e - 01}&{4.3664e - 01}&{ - 6.9744e - 01}&{ - 6.2266e - 01}\\{ - 2.6495e - 01}&{ - 1.0031e - 01}&{6.3469e - 01}&{ - 7.0207e - 01}\\{ - 3.8004e - 01}&{2.6065e - 02}&{ - 6.5658e - 01}&{ - 5.9434e - 01}\\{2.5726e - 03}&{5.0585e - 01}&{1.2092e - 01}&{ - 1.1041e + 00}\end{aligned}} \right)\)

It is observed that\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) \ne {\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

Hence, \(\left( {A + B} \right)\left( {A - B} \right) \ne {A^2} - {B^2}\).

07

Verify the identity by using MATLAB

The equation\(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^2}\)is true if the MATLAB command is verified, such that\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) = {\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

Create a random matrix\(A\)by using the MATLAB command shown below:

\( > > A = rand\left( {4,4} \right)\)

The output of matrix A is shown below:

\({\rm{A}} = \left( {\begin{aligned}{*{20}{c}}{1.6722e - 01}&{7.9546e - 01}&{4.9693e - 01}&{5.3353e - 03}\\{7.0501e - 01}&{5.3309e - 01}&{8.1323e - 01}&{7.0171e - 01}\\{2.5972e - 01}&{5.9067e - 01}&{8.2506e - 01}&{1.7924 - 01}\\{4.6123e - 01}&{5.4354e - 01}&{7.3495e - 01}&{4.4769e - 01}\end{aligned}} \right)\)

Create a random matrix B by using the MATLAB command shown below:

\( > > B = rand\left( {4,4} \right)\)

The output of matrix B is shown below:

\({\rm{B}} = \left( {\begin{aligned}{*{20}{c}}{0.5328}&{0.4403}&{0.6399}&{0.4663}\\{0.3845}&{0.9139}&{0.1529}&{0.8078}\\{0.3646}&{0.6551}&{0.5067}&{0.2168}\\{0.9397}&{0.7910}&{0.3084}&{0.4286}\end{aligned}} \right)\)

Now, run the command\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right)\).

\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 0.2047}&{ - 0.4119}&{1.2790}&{ - 0.4875}\\{ - 0.7580}&{ - 0.5999}&{1.7511}&{ - 0.6632}\\{ - 0.1581}&{ - 0.4361}&{1.3262}&{ - 0.4624}\\{ - 0.6131}&{ - 0.2946}&{1.3868}&{ - 0.8098}\end{aligned}} \right)\)

And run the command \({\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

\({\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}} = \left( {\begin{aligned}{*{20}{c}}{ - 0.404306}&{ - 0.571461}&{0.267592}&{ - 0.292110}\\{ - 0.342471}&{ - 0.036869}&{1.258221}&{ - 0.459184}\\{ - 0.077734}&{ - 0.156382}&{0.764773}&{ - 0.257954}\\{ - 0.462302}&{ - 0.343625}&{0.595857}&{ - 0.611723}\end{aligned}} \right)\)

It is observed that\(\left( {{\rm{A}} + {\rm{B}}} \right)*\left( {{\rm{A}} - {\rm{B}}} \right) \ne {\rm{A}}*{\rm{A}} - {\rm{B}}*{\rm{B}}\).

Hence, \(\left( {A + B} \right)\left( {A - B} \right) \ne {A^2} - {B^2}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

2. \[\left[ {\begin{array}{*{20}{c}}E&{\bf{0}}\\{\bf{0}}&F\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5โ€“8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

8. \[\left[ {\begin{array}{*{20}{c}}A&B\\{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&Y&Z\\{\bf{0}}&{\bf{0}}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&I\end{array}} \right]\]

Show that block upper triangular matrix \(A\) in Example 5is invertible if and only if both \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible. [Hint: If \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible, the formula for \({A^{ - {\bf{1}}}}\) given in Example 5 actually works as the inverse of \(A\).] This fact about \(A\) is an important part of several computer algorithims that estimates eigenvalues of matrices. Eigenvalues are discussed in chapter 5.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free