Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Let \(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{25}}}&{ - {\bf{9}}}&{ - {\bf{27}}}\\{{\bf{546}}}&{{\bf{180}}}&{{\bf{537}}}\\{{\bf{154}}}&{{\bf{50}}}&{{\bf{149}}}\end{aligned}} \right)\). Find the second and third columns of \({A^{ - {\bf{1}}}}\) without computing the first column.

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}{\frac{3}{2}}&{ - \frac{9}{2}}\\{ - \frac{{433}}{6}}&{\frac{{439}}{2}}\\{\frac{{68}}{3}}&{ - 69}\end{aligned}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{2}}}}&{{e_{\bf{3}}}}\end{aligned}} \right)\)

The matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_2}}&{{e_3}}\end{aligned}} \right)\) can be expressed as

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_2}}&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 25}&{ - 9}&{ - 27}&0&0\\{546}&{180}&{537}&1&0\\{154}&{50}&{149}&0&1\end{aligned}} \right)\).

02

Convert the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{2}}}}&{{e_{\bf{3}}}}\end{aligned}} \right)\) into the row-reduced echelon form

Consider the matrix\(\left( {\begin{aligned}{*{20}{c}}{ - 25}&{ - 9}&{ - 27}&0&0\\{546}&{180}&{537}&1&0\\{154}&{50}&{149}&0&1\end{aligned}} \right)\).

Use the code in MATLAB to obtain the row-reduced echelon form as shown below:

\(\begin{aligned}{l} > > {\rm{ A }} = {\rm{ }}\left( {\begin{aligned}{*{20}{c}}{ - 25}&{ - 9}&{ - 27}&0&0\end{aligned};{\rm{ }}\begin{aligned}{*{20}{c}}{546}&{180}&{537}&1&0\end{aligned};{\rm{ }}\begin{aligned}{*{20}{c}}{154}&{50}&{149}&0&1\end{aligned}{\rm{ }}} \right);\\ > > {\rm{ U}} = {\rm{rref}}\left( {\rm{A}} \right)\end{aligned}\)

\(\left( {\begin{aligned}{*{20}{c}}1&0&0&{\frac{3}{2}}&{ - \frac{9}{2}}\\0&1&0&{ -

\frac{{433}}{6}}&{\frac{{439}}{2}}\\0&0&1&{\frac{{68}}{3}}&{ - 69}\end{aligned}} \right)\)

03

Find the column of the inverse matrix

In the matrix \(\left( {\begin{aligned}{*{20}{c}}1&0&0&{\frac{3}{2}}&{ - \frac{9}{2}}\\0&1&0&{ - \frac{{433}}{6}}&{\frac{{439}}{2}}\\0&0&1&{\frac{{68}}{3}}&{ - 69}\end{aligned}} \right)\), the second and third columns are \(\left( {\begin{aligned}{*{20}{c}}{\frac{3}{2}}&{ - \frac{9}{2}}\\{ - \frac{{433}}{6}}&{\frac{{439}}{2}}\\{\frac{{68}}{3}}&{ - 69}\end{aligned}} \right)\).

So, the third column of the inverse matrix is \(\left( {\begin{aligned}{*{20}{c}}{\frac{3}{2}}&{ - \frac{9}{2}}\\{ - \frac{{433}}{6}}&{\frac{{439}}{2}}\\{\frac{{68}}{3}}&{ - 69}\end{aligned}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume \(A - s{I_n}\) is invertible and view (8) as a system of two matrix equations. Solve the top equation for \({\bf{x}}\) and substitute into the bottom equation. The result is an equation of the form \(W\left( s \right){\bf{u}} = {\bf{y}}\), where \(W\left( s \right)\) is a matrix that depends upon \(s\). \(W\left( s \right)\) is called the transfer function of the system because it transforms the input \({\bf{u}}\) into the output \({\bf{y}}\). Find \(W\left( s \right)\) and describe how it is related to the partitioned system matrix on the left side of (8). See Exercise 15.

Suppose the second column of Bis all zeros. What can you

say about the second column of AB?

2. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{7}}&{\bf{4}}\end{aligned}} \right)\).

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

Let \({{\bf{r}}_1} \ldots ,{{\bf{r}}_p}\) be vectors in \({\mathbb{R}^{\bf{n}}}\), and let Qbe an\(m \times n\)matrix. Write the matrix\(\left( {\begin{aligned}{*{20}{c}}{Q{{\bf{r}}_1}}& \cdots &{Q{{\bf{r}}_p}}\end{aligned}} \right)\)as a productof two matrices (neither of which is an identity matrix).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free