Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{2}}}&{ - {\bf{7}}}&{ - {\bf{9}}}\\{\bf{2}}&{\bf{5}}&{\bf{6}}\\{\bf{1}}&{\bf{3}}&{\bf{4}}\end{aligned}} \right)\). Find the third column of \({A^{ - {\bf{1}}}}\) without computing the other columns.

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}3\\{ - 6}\\4\end{aligned}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

The expression \(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right)\) can be calculated as shown below:

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 7}&{ - 9}\\2&5&6\\1&3&4\end{aligned}\,\,\begin{aligned}{*{20}{c}}0\\0\\1\end{aligned}} \right)\)

02

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

Interchange rows one and three, i.e., \({R_1} \leftrightarrow {R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\2&5&6\\{ - 2}&{ - 7}&{ - 9}\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\0\\0\end{aligned}} \right)\)

For row three, multiply row one by 2 and add it to row three, i.e., \({R_3} \to {R_3} + 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\2&5&6\\0&{ - 1}&{ - 1}\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\0\\2\end{aligned}} \right)\)

03

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

For row two, multiply row one by 2 and subtract it from row two, i.e., \({R_2} \to {R_2} - 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\0&{ - 1}&{ - 2}\\0&{ - 1}&{ - 1}\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\{ - 2}\\2\end{aligned}} \right)\)

04

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row three, subtract row two from row three, i.e., \({R_3} \to {R_3} - {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\0&{ - 1}&{ - 2}\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\{ - 2}\\4\end{aligned}} \right)\)

05

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row two, multiply row two by 2 and add it to row two, i.e., \({R_2} \to {R_2} + 2{R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&4\\0&{ - 1}&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}1\\6\\4\end{aligned}} \right)\)

06

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row one, multiply row three by 4 and subtract it from row one, i.e., \({R_1} \to {R_1} - 4{R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&3&0\\0&{ - 1}&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}{ - 15}\\6\\4\end{aligned}} \right)\)

At row one, multiply row two by 3 and add it to row one, i.e., \({R_1} \to {R_1} + 3{R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{ - 1}&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}3\\6\\4\end{aligned}} \right)\)

07

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{e_{\bf{3}}}}\end{aligned}} \right)\)

At row two, multiply row two by \( - 1\), i.e., \({R_2} \to - {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&{{e_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}\,\,\begin{aligned}{*{20}{c}}3\\{ - 6}\\4\end{aligned}} \right)\)

So, the third column of the inverse matrix is \(\left( {\begin{aligned}{*{20}{c}}3\\{ - 6}\\4\end{aligned}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

Explain why the columns of an \(n \times n\) matrix Aare linearly independent when Ais invertible.

If Ais an \(n \times n\) matrix and the equation \(A{\bf{x}} = {\bf{b}}\) has more than one solution for some b, then the transformation \({\bf{x}}| \to A{\bf{x}}\) is not one-to-one. What else can you say about this transformation? Justify your answer.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}\\{\bf{5}}&{{\bf{12}}}\end{aligned}} \right),{b_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}\\{\bf{3}}\end{aligned}} \right),{b_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{ - {\bf{5}}}\end{aligned}} \right),{b_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{6}}\end{aligned}} \right),\) and \({b_{\bf{4}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{aligned}} \right)\).

  1. Find \({A^{ - {\bf{1}}}}\), and use it to solve the four equations \(Ax = {b_{\bf{1}}},\)\(Ax = {b_2},\)\(Ax = {b_{\bf{3}}},\)\(Ax = {b_{\bf{4}}}\)\(\)
  2. The four equations in part (a) can be solved by the same set of row operations, since the coefficient matrix is the same in each case. Solve the four equations in part (a) by row reducing the augmented matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{b_{\bf{1}}}}&{{b_{\bf{2}}}}&{{b_{\bf{3}}}}&{{b_{\bf{4}}}}\end{aligned}} \right)\).

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free