Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give a formula for \({\left( {ABx} \right)^T}\), where \({\bf{x}}\) is a vector and \(A\) and \(B\) are matrices of appropriate sizes.

Short Answer

Expert verified

The formula for \({\left( {ABx} \right)^T}\) is \({\left( {ABx} \right)^T} = {x^T}{B^T}{A^T}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the transpose property

By the transpose property, \({\left( {AB} \right)^T} = {B^T}{A^T}\).

Here, A and B matrices are of appropriate sizes.

02

Consider x as a matrix

Since every vector is a column vector,

\(\begin{aligned}{c}{\left( {ABx} \right)^T} = {x^T}{\left( {AB} \right)^T}\\ = {x^T}{B^T}{A^T}.\end{aligned}\)

03

Draw of conclusion

Hence, the formula for \({\left( {ABx} \right)^T}\) is \({\left( {ABx} \right)^T} = {x^T}{B^T}{A^T}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free