Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the algorithm from this section to find the inverse of

\(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}\end{aligned}} \right)\)and \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{aligned}} \right)\)

Let \(A\) be the corresponding \(n \times n\) matrix, let \(B\) be its inverse. Guess the form of \(B\) and then prove that \(AB = I\) and \(BA = I\).

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}1&0&0\\{ - 1}&1&0\\0&{ - 1}&1\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}1&0&0&0\\{ - 1}&1&0&0\\0&{ - 1}&1&0\\0&0&{ - 1}&1\end{aligned}} \right)\), and \(AB = BA = I\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\) for the matrix of \({\bf{3}} \times {\bf{3}}\)

Form the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\1&1&0\\1&1&1\end{aligned}\,\,\,\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\)

At row three, subtract row one from row three, i.e., \({R_3} \to {R_3} - {R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\1&1&0\\0&1&1\end{aligned}\,\,\,\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\{ - 1}&0&1\end{aligned}} \right)\)

At row two, subtract row one from row two, i.e., \({R_2} \to {R_2} - {R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{aligned}\,\,\,\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{ - 1}&1&0\\{ - 1}&0&1\end{aligned}} \right)\)

02

Apply row operation to \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, subtract row two from row three, i.e., \({R_3} \to {R_3} - {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}\,\,\,\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{ - 1}&1&0\\0&{ - 1}&1\end{aligned}} \right)\)

So, the inverse matrix is \(\left( {\begin{aligned}{*{20}{c}}1&0&0\\{ - 1}&1&0\\0&{ - 1}&1\end{aligned}} \right)\).

03

Find the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\) for the matrix of \({\bf{4}} \times {\bf{4}}\)

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\1&1&0&0\\1&1&1&0\\1&1&1&1\end{aligned}\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{aligned}} \right)\)

At row four, subtract row one from row four, i.e., \({R_4} \to {R_4} - {R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\1&1&0&0\\1&1&1&0\\0&1&1&1\end{aligned}\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\{ - 1}&0&0&1\end{aligned}} \right)\)

At row three, subtract row one from row three, i.e., \({R_3} \to {R_3} - {R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\1&1&0&0\\0&1&1&0\\0&1&1&1\end{aligned}\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\{ - 1}&0&1&0\\{ - 1}&0&0&1\end{aligned}} \right)\)

At row two, subtract row one from row two, i.e., \({R_2} \to {R_2} - {R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&1&1&0\\0&1&1&1\end{aligned}\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0&0\\{ - 1}&1&0&0\\{ - 1}&0&1&0\\{ - 1}&0&0&1\end{aligned}} \right)\)

04

Apply row operations to \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row four, subtract row three from row four, i.e., \({R_4} \to {R_4} - {R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&1&1&0\\0&0&0&1\end{aligned}\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0&0\\{ - 1}&1&0&0\\{ - 1}&0&1&0\\0&0&{ - 1}&1\end{aligned}} \right)\)

At row three, subtract row two from row three, i.e., \({R_3} \to {R_3} - {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{aligned}\,\,\,\,\,\,\begin{aligned}{*{20}{c}}1&0&0&0\\{ - 1}&1&0&0\\0&{ - 1}&1&0\\0&0&{ - 1}&1\end{aligned}} \right)\)

So, the inverse of the matrix is \(\left( {\begin{aligned}{*{20}{c}}1&0&0&0\\{ - 1}&1&0&0\\0&{ - 1}&1&0\\0&0&{ - 1}&1\end{aligned}} \right)\).

05

Guess the matrix \(B\)

The inverse matrix of \(A\) is \(B\). Matrix \(B\) of the order \(n \times n\) can be expressed as

\(B = \left( {\begin{aligned}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&{}\\ \vdots &{}& \ddots & \ddots & \vdots \\0&0& \cdots &{ - 1}&1\end{aligned}} \right)\).

For \(j = 1,...,n\), let \({{\bf{a}}_j}\), \({{\bf{b}}_j}\) and \({{\bf{e}}_j}\) denote the \(j\)th columns of \(A\), \(B\) and \(I\), respectively.

For \(j = 1,...,n - 1\),

\({{\bf{a}}_j} - {{\bf{a}}_{j + 1}} = {{\bf{e}}_j}\),

\({{\bf{b}}_j} = {{\bf{e}}_j} - {{\bf{e}}_{j + 1}}\), and

\({{\bf{a}}_n} = {{\bf{b}}_n} = {{\bf{e}}_n}\).

06

Find the value of \(A{{\bf{b}}_j}\)

\(\begin{aligned}{c}A{b_j} = A\left( {{{\bf{e}}_j} - {{\bf{e}}_{j + 1}}} \right)\\ = A{{\bf{e}}_j} - A{{\bf{e}}_{j + 1}}\\ = {{\bf{a}}_j} - {{\bf{a}}_{j + 1}}\\ = {{\bf{e}}_j}\end{aligned}\)

So, \(AB = I\).

07

Find the value of \(B{{\bf{a}}_j}\)

As \({a_n} = {b_n} = {e_n}\),

\(\begin{aligned}{c}B{{\bf{a}}_j} = B\left( {{{\bf{e}}_j} + ..... + {{\bf{e}}_n}} \right)\\ = {{\bf{b}}_j} + ..... + {{\bf{b}}_n}\\ = \left( {{{\bf{e}}_j} - {{\bf{e}}_{j + 1}}} \right) + \left( {{{\bf{e}}_{j + 1}} - {{\bf{e}}_{j + 2}}} \right) + ..... + \left( {{{\bf{e}}_{n - 1}} - {{\bf{e}}_n}} \right) + {{\bf{e}}_n}\\ = {{\bf{e}}_j}.\end{aligned}\)

So, \(BA = I\).

The inverse of the given matrices are \(\left( {\begin{aligned}{*{20}{c}}1&0&0\\{ - 1}&1&0\\0&{ - 1}&1\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}1&0&0&0\\{ - 1}&1&0&0\\0&{ - 1}&1&0\\0&0&{ - 1}&1\end{aligned}} \right)\), and \(AB = BA = I\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free