Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the inverse of matrices in Exercise 29-32, if they exist. Use the algorithm introduced in this section.

\(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{1}}\\{\bf{4}}&{ - {\bf{7}}}&{\bf{3}}\\{ - {\bf{2}}}&{\bf{6}}&{ - {\bf{4}}}\end{aligned}} \right)\)

Short Answer

Expert verified

The inverse of the matrix is not possible.

Step by step solution

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\4&{ - 7}&3\\{ - 2}&6&{ - 4}\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\)

02

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiply row one by 2 and add it to row three, i.e., \({R_3} \to {R_3} + 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\4&{ - 7}&3\\0&2&{ - 2}\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\2&0&1\end{aligned}} \right)\)

03

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row two, multiply row one by 4 and subtract it from row two, i.e., \({R_2} \to {R_2} - 4{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\0&1&{ - 1}\\0&2&{ - 2}\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{ - 4}&1&0\\2&0&1\end{aligned}} \right)\)

04

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiply row two by 2 and subtract it from row three, i.e., \({R_3} \to {R_3} - 2{R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\0&1&{ - 1}\\0&0&0\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{ - 4}&1&0\\{10}&{ - 2}&1\end{aligned}} \right)\)

So, the inverse of the matrix is not possible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

8. \[\left[ {\begin{array}{*{20}{c}}A&B\\{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&Y&Z\\{\bf{0}}&{\bf{0}}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&I\end{array}} \right]\]

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

Let Abe an invertible \(n \times n\) matrix, and let B be an \(n \times p\) matrix. Show that the equation \(AX = B\) has a unique solution \({A^{ - 1}}B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free