Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the inverse of matrices in Exercise 29-32, if they exist. Use the algorithm introduced in this section.

\(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{ - {\bf{2}}}&{\bf{1}}\\{\bf{4}}&{ - {\bf{7}}}&{\bf{3}}\\{ - {\bf{2}}}&{\bf{6}}&{ - {\bf{4}}}\end{aligned}} \right)\)

Short Answer

Expert verified

The inverse of the matrix is not possible.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\4&{ - 7}&3\\{ - 2}&6&{ - 4}\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\)

02

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiply row one by 2 and add it to row three, i.e., \({R_3} \to {R_3} + 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\4&{ - 7}&3\\0&2&{ - 2}\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\2&0&1\end{aligned}} \right)\)

03

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row two, multiply row one by 4 and subtract it from row two, i.e., \({R_2} \to {R_2} - 4{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\0&1&{ - 1}\\0&2&{ - 2}\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{ - 4}&1&0\\2&0&1\end{aligned}} \right)\)

04

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiply row two by 2 and subtract it from row three, i.e., \({R_3} \to {R_3} - 2{R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}&1\\0&1&{ - 1}\\0&0&0\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{ - 4}&1&0\\{10}&{ - 2}&1\end{aligned}} \right)\)

So, the inverse of the matrix is not possible.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

2. \[\left[ {\begin{array}{*{20}{c}}E&{\bf{0}}\\{\bf{0}}&F\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free