Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the inverse of matrices in Exercise 29-32, if they exist. Use the algorithm introduced in this section.

\(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{1}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}&{\bf{4}}\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left( {\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\{\frac{7}{2}}&{\frac{3}{2}}&{\frac{1}{2}}\end{aligned}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the expression \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\{ - 3}&1&4\\2&{ - 3}&4\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\)

02

Apply the row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiply row one by 2 and subtract it from row three, i.e., \({R_3} \to {R_3} - 2{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\{ - 3}&1&4\\0&{ - 3}&8\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\{ - 2}&0&1\end{aligned}} \right)\)

03

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row two, multiply row one by 3 and add it to row two, i.e., \({R_2} \to {R_2} + 3{R_1}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\0&1&{ - 2}\\0&{ - 3}&8\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\3&1&0\\{ - 2}&0&1\end{aligned}} \right)\)

04

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row three, multiple row two by 3 and add it to row three, i.e., \({R_3} \to {R_3} + 3{R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\0&1&{ - 2}\\0&0&2\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\3&1&0\\7&3&1\end{aligned}} \right)\)

05

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row two, add rows two and three, i.e., \({R_2} \to {R_2} + {R_3}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 2}\\0&1&0\\0&0&2\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}1&0&0\\{10}&4&1\\7&3&1\end{aligned}} \right)\)

06

Apply row operation to the matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)

At row one, add rows three and one, i.e., \({R_1} \to {R_1} + {R_2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&2\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\7&3&1\end{aligned}} \right)\)

Divide row three by 2, i.e., \({R_3} \to \frac{{{R_3}}}{2}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}\,\,\,\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\{\frac{7}{2}}&{\frac{3}{2}}&{\frac{1}{2}}\end{aligned}} \right)\)

So, the inverse of the matrix is \(\left( {\begin{aligned}{*{20}{c}}8&3&1\\{10}&4&1\\{\frac{7}{2}}&{\frac{3}{2}}&{\frac{1}{2}}\end{aligned}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the โ€œinputโ€ to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the โ€œoutputโ€ and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the โ€œstateโ€ vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

Show that if the columns of Bare linearly dependent, then so are the columns of AB.

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5โ€“8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

Let \(A = \left[ {\begin{array}{*{20}{c}}B&{\bf{0}}\\{\bf{0}}&C\end{array}} \right]\), where \(B\) and \(C\) are square. Show that \(A\)is invertible if an only if both \(B\) and \(C\) are invertible.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free