Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)

Short Answer

Expert verified

Theorem 2(d) is proved.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Statement of theorem 2

Theorem 2states that Abe a \(m \times n\) matrix let Band Chave sizes for which the indicated sums and products are defined.

  1. \(A\left( {BC} \right) = \left( {AB} \right)C\) (associative law of multiplication)
  2. \(A\left( {B + C} \right) = AB + AC\) (left distributive law)
  3. \(\left( {B + C} \right)A = BA + CA\) (right distributive law)
  4. \(r\left( {AB} \right) = \left( {rA} \right)B = A\left( {rB} \right)\) (for any scalar \(r\))
02

Prove theorem 2(d)

The \(\left( {i,j} \right)\)- entries for \(r\left( {AB} \right),\left( {rA} \right)B,\) and \(A\left( {rB} \right)\) are all the same since

\(r\sum\limits_{k = 1}^n {{a_{ik}}{b_{kj}}} = \sum\limits_{k = 1}^n {\left( {r{a_{ik}}} \right){b_{kj}}} = \sum\limits_{k = 1}^n {{a_{ik}}\left( {r{b_{kj}}} \right)} \).

Hence, theorem 2(d) is proved.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

In Exercise 9 mark each statement True or False. Justify each answer.

9. a. In order for a matrix B to be the inverse of A, both equations \(AB = I\) and \(BA = I\) must be true.

b. If A and B are \(n \times n\) and invertible, then \({A^{ - {\bf{1}}}}{B^{ - {\bf{1}}}}\) is the inverse of \(AB\).

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ab - cd \ne {\bf{0}}\), then A is invertible.

d. If A is an invertible \(n \times n\) matrix, then the equation \(Ax = b\) is consistent for each b in \({\mathbb{R}^{\bf{n}}}\).

e. Each elementary matrix is invertible.

In exercise 11 and 12, mark each statement True or False.Justify each answer.

a. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}&{{A_{\bf{2}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), with \({A_{\bf{1}}}\) and \({A_{\bf{2}}}\) the same sizes as \({B_{\bf{1}}}\) and \({B_{\bf{2}}}\), respectively then \(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_{\bf{2}}} + {B_{\bf{2}}}}\end{array}} \right]\).

b. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_1}}\\{{B_{\bf{2}}}}\end{array}} \right]\), then the partitions of \(A\) and \(B\) are comfortable for block multiplication.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free