Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

Short Answer

Expert verified

\(A + 2B = \left( {\begin{aligned}{*{20}{c}}{16}&{ - 10}&1\\6&{ - 13}&{ - 4}\end{aligned}} \right)\),

\(3C - E\)is not defined;

\(CB = \left( {\begin{aligned}{*{20}{c}}9&{ - 13}&{ - 5}\\{ - 13}&6&{ - 5}\end{aligned}} \right)\)and

\(EB\) is not defined.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the matrix \(A + 2B\)

The value of \(A + 2B\) can be calculated as follows:

\(\begin{aligned}{c}A + 2B = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right) + 2\left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right) + \left( {\begin{aligned}{*{20}{c}}{14}&{ - 10}&2\\2&{ - 8}&{ - 6}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{16}&{ - 10}&1\\6&{ - 13}&{ - 4}\end{aligned}} \right)\end{aligned}\)

02

Find the matrix \({\bf{3}}C - E\)

The value of \(3C - E\) is not defined as \(C\) has 2 columns, whereas \(E\) has 1 column.

03

Find the matrix \(CB\)

The value \(CB\) can be calculated as follows:

\(\begin{aligned}{c}CB = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right) \times \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{1 \times 7 + 2 \times 1}&{1 \times \left( { - 5} \right) + 2 \times \left( { - 4} \right)}&{1 \times 1 + 2 \times \left( { - 3} \right)}\\{\left( { - 2} \right) \times 7 + 1 \times 1}&{\left( { - 2} \right) \times \left( { - 5} \right) + 1 \times \left( { - 4} \right)}&{\left( { - 2} \right) \times 1 + 1 \times \left( { - 3} \right)}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}9&{ - 13}&{ - 5}\\{ - 13}&6&{ - 5}\end{aligned}} \right)\end{aligned}\)

04

Find the matrix \(EB\)

The product \(EB\) is not defined as the number of columns in \(E\) does not match the number of rows of \(B\).

So, \(A + 2B = \left( {\begin{aligned}{*{20}{c}}{16}&{ - 10}&1\\6&{ - 13}&{ - 4}\end{aligned}} \right)\) and \(3C - E\) are not defined; \(CB = \left( {\begin{aligned}{*{20}{c}}9&{ - 13}&{ - 5}\\{ - 13}&6&{ - 5}\end{aligned}} \right)\) and \(EB\) are not defined.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

Let \({{\bf{r}}_1} \ldots ,{{\bf{r}}_p}\) be vectors in \({\mathbb{R}^{\bf{n}}}\), and let Qbe an\(m \times n\)matrix. Write the matrix\(\left( {\begin{aligned}{*{20}{c}}{Q{{\bf{r}}_1}}& \cdots &{Q{{\bf{r}}_p}}\end{aligned}} \right)\)as a productof two matrices (neither of which is an identity matrix).

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

16. a. If A and B are \({\bf{3}} \times {\bf{3}}\) and \(B = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right)\), then \(AB = \left( {A{{\bf{b}}_1} + A{{\bf{b}}_2} + A{{\bf{b}}_3}} \right)\).

b. The second row of ABis the second row of Amultiplied on the right by B.

c. \(\left( {AB} \right)C = \left( {AC} \right)B\)

d. \({\left( {AB} \right)^T} = {A^T}{B^T}\)

e. The transpose of a sum of matrices equals the sum of their transposes.

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free