Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

2. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{7}}&{\bf{4}}\end{aligned}} \right)\).

Short Answer

Expert verified

The inverse of \(\left( {\begin{aligned}{*{20}{c}}3&2\\7&4\end{aligned}} \right)\) is \(\left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{3.5}&{ - 1.5}\end{aligned}} \right)\).

Step by step solution

01

Check if the matrix is invertible

\(\begin{aligned}{c}\det \left( {\left( {\begin{aligned}{*{20}{c}}3&2\\7&4\end{aligned}} \right)} \right) = 3\left( 4 \right) - 2\left( 7 \right)\\ = 12 - 14\\\det \left( {\left( {\begin{aligned}{*{20}{c}}3&2\\7&4\end{aligned}} \right)} \right) = - 2 \ne 0\end{aligned}\)

This implies that\(\left( {\begin{aligned}{*{20}{c}}3&2\\7&4\end{aligned}} \right)\)is invertible.

02

Use the formula

\({\left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\) when \(ad - bc \ne 0\).

03

Write the inverse matrix

\(\begin{aligned}{c}{\left( {\begin{aligned}{*{20}{c}}3&2\\7&4\end{aligned}} \right)^{ - 1}} = \frac{1}{{ - 2}}\left( {\begin{aligned}{*{20}{c}}4&{ - 2}\\{ - 7}&3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{\frac{7}{2}}&{ - \frac{3}{2}}\end{aligned}} \right)\\{\left( {\begin{aligned}{*{20}{c}}3&2\\7&4\end{aligned}} \right)^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}{ - 2}&1\\{3.5}&{ - 1.5}\end{aligned}} \right)\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that block upper triangular matrix \(A\) in Example 5is invertible if and only if both \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible. [Hint: If \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible, the formula for \({A^{ - {\bf{1}}}}\) given in Example 5 actually works as the inverse of \(A\).] This fact about \(A\) is an important part of several computer algorithims that estimates eigenvalues of matrices. Eigenvalues are discussed in chapter 5.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{4}}}\\{\bf{7}}&{ - {\bf{8}}}\end{aligned}} \right)\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free