Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 9–12 display a matrix Aand an echelon form of A. Find bases for Col Aand Nul A, and then state the dimensions of these subspaces.

\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&{ - 4}\\{ - 3}&9&{ - 1}&5\\2&{ - 6}&4&{ - 3}\\{ - 4}&{12}&2&7\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&{ - 4}\\0&0&5&{ - 7}\\0&0&0&5\\0&0&0&0\end{array}} \right]\)

Short Answer

Expert verified

The bases for Col A are \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\2\\{ - 4}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\4\\2\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\5\\{ - 3}\\7\end{array}} \right]} \right\}\). The bases for Nul A are \(\left[ {\begin{array}{*{20}{c}}3\\1\\0\\0\end{array}} \right]\). The dimension of Col A is 3. The dimension of Nul A is 1.

Step by step solution

01

Bases for Nul A and Col A

The set of all linear combinations of the columns of matrix A is Col A, or it is called the column space of A. Pivot columns are the bases for Col A.

The set of all homogeneous equation solutions\(A{\bf{x}} = 0\)is Nul A, or it is called the null space of A.

02

Write the bases for Col A

To identify the pivot and the pivot position, observe the matrix’s leftmost column (nonzero column), which is the pivot column. At the top of this column, 1 is the pivot.

It is observed that the first, third, and fourth columns have pivot elements.

The corresponding columns of matrix A are shown below:

\(\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\2\\{ - 4}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\4\\2\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\5\\{ - 3}\\7\end{array}} \right]\)

The column space is given as shown below:

\({\rm{Col }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\2\\{ - 4}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\4\\2\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\5\\{ - 3}\\7\end{array}} \right]} \right\}\)

Thus, the bases for Col A are \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\{ - 3}\\2\\{ - 4}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\4\\2\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\5\\{ - 3}\\7\end{array}} \right]} \right\}\).

03

Write the bases for Nul A

It is given that there are 4 columns in the given matrix, which means there should be 4 entries in vector x.

Thus, the equation \(A{\bf{x}} = 0\) can be written as shown below:

\(\begin{array}{c}Ax = 0\\\left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&{ - 4}\\0&0&5&{ - 7}\\0&0&0&5\\0&0&0&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right]\end{array}\)

The augmented matrix is as shown below:

\(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&{ - 4}&0\\0&0&5&{ - 7}&0\\0&0&0&5&0\\0&0&0&0&0\end{array}} \right]\)

Multiply row 3 by 5. Then, add 4 times row 3 to row 1.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&{ - 4}&0\\0&0&5&{ - 7}&0\\0&0&0&1&0\\0&0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0&0\\0&0&5&{ - 7}&0\\0&0&0&1&0\\0&0&0&0&0\end{array}} \right]\)

Add 7 times row 3 to row 2, and \( - 2\) times row 2 to row 1.

\(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&2&0&0\\0&0&5&0&0\\0&0&0&1&0\\0&0&0&0&0\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 3}&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&0\end{array}} \right]\)

So, the system of equations is as shown below:

\(\begin{array}{c}{x_1} = 3{x_2}\\{x_3} = 0\\{x_4} = 0\end{array}\)

From the above equations, \({x_1}\), \({x_3}\), and \({x_4}\) correspond to the pivot positions. So, \({x_1}\), \({x_3}\), and \({x_4}\) are the basic variables, and \({x_2}\) is the free variable.

Let \({x_2} = a\).

Substitute the value \({x_2} = a\) in the equation \({x_1} = 3{x_2}\) to obtain the general solution.

\(\begin{array}{l}{x_1} = 3\left( a \right)\\{x_1} = 3a\end{array}\)

Obtain the vector in the parametric form by using \({x_1} = 3a\), \({x_2} = a\), \({x_3} = 0\), and \({x_4} = 0\).

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{3a}\\a\\0\\0\end{array}} \right]\\ = a\left[ {\begin{array}{*{20}{c}}3\\1\\0\\0\end{array}} \right]\\ = {x_2}\left[ {\begin{array}{*{20}{c}}3\\1\\0\\0\end{array}} \right]\end{array}\)

Nul A is shown below:

\({\rm{Nul }}A = \left[ {\begin{array}{*{20}{c}}3\\1\\0\\0\end{array}} \right]\)

Thus, the bases for Nul A are \(\left[ {\begin{array}{*{20}{c}}3\\1\\0\\0\end{array}} \right]\).

04

Dimensions of subspaces

It is observed that matrix A has three pivot columns; so the dimension of Col A is 3. Thus, Col A= 3.

Also, it is observed that the homogeneous equation \(A{\bf{x}} = 0\) has only one free variable; so the dimension of Nul A is 1. Thus, Nul A= 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

Show that if the columns of Bare linearly dependent, then so are the columns of AB.

Let \(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\), and \(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\). Compute \(AD\) and \(DA\). Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a \(3 \times 3\) matrix B, not the identity matrix or the zero matrix, such that \(AB = BA\).

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free