Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\)as\(n \times 1\)matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is a \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

28. If u and v are in \({\mathbb{R}^n}\), how are \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) related? How are \({{\mathop{\rm uv}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) related?

Short Answer

Expert verified

The relation of inner and outer product is \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) and \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = {\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\), respectively.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determine the relation of the inner product

Theorem 3states that \(A\) and \(B\) denotes matrices whose sizes are appropriate for the following sums and products.

  1. \({\left( {{A^T}} \right)^{^T}} = A\).
  2. \({\left( {A + B} \right)^T} = {A^T} + {B^T}\).
  3. For any scalar \(r\), \({\left( {rA} \right)^T} = r{A^T}\).
  4. \({\left( {AB} \right)^T} = {B^T}{A^T}\).

The inner product \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) is a real number since it equals its transpose.

Use theorem 3 to obtain the relation of the inner product as follows:

\(\begin{aligned}{c}{{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} = {\left( {{{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} } \right)^T}\\ = {{\mathop{\rm v}\nolimits} ^T}{\left( {{{\mathop{\rm u}\nolimits} ^T}} \right)^T}\\ = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \end{aligned}\)

02

Determine the relation of the outer product

A \(n \times n\) matrix is an outer product \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T}\).

Use theorem 3 to obtain the relation of the outer product as follows:

\(\begin{aligned}{c}{\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = {\left( {{\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T}} \right)^T}\\ = {\left( {{{\mathop{\rm v}\nolimits} ^T}} \right)^T}{{\mathop{\rm u}\nolimits} ^T}\\ = {\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\end{aligned}\)

Thus, the relation of inner and outer products is \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) and \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = {\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\), respectively.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free