Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

10: With \({\mathop{\rm u}\nolimits} = \left( { - 2,3,1} \right)\) and A as in Exercise 8, determine if u is in Nul A.a

Short Answer

Expert verified

\({\mathop{\rm u}\nolimits} \)is in Nul A.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

State the value of A as in Exercise 8

Matrix A in the form \(\left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\), as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 2}&0\\0&2&{ - 6}\\6&3&3\end{array}} \right]\)

02

Determine whether p is in Nul A

The null spaceof matrix A is the set Nul Aof all solutions of the homogeneous equation\(Ax = 0\).

Calculate \(A{\mathop{\rm u}\nolimits} \), as shown below:

\(\begin{array}{c}A{\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 2}&0\\0&2&{ - 6}\\6&3&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\\1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{6 - 6 + 0}\\{0 + 6 - 6}\\{ - 12 + 9 + 3}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right]\end{array}\)

Since\[A{\mathop{\rm u}\nolimits} = 0\], \({\mathop{\rm u}\nolimits} \) is in Nul A.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

If A, B, and X are \(n \times n\) invertible matrices, does the equation \({C^{ - 1}}\left( {A + X} \right){B^{ - 1}} = {I_n}\) have a solution, X? If so, find it.

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

16. a. If A and B are \({\bf{3}} \times {\bf{3}}\) and \(B = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right)\), then \(AB = \left( {A{{\bf{b}}_1} + A{{\bf{b}}_2} + A{{\bf{b}}_3}} \right)\).

b. The second row of ABis the second row of Amultiplied on the right by B.

c. \(\left( {AB} \right)C = \left( {AC} \right)B\)

d. \({\left( {AB} \right)^T} = {A^T}{B^T}\)

e. The transpose of a sum of matrices equals the sum of their transposes.

Suppose A, B,and Care invertible \(n \times n\) matrices. Show that ABCis also invertible by producing a matrix Dsuch that \(\left( {ABC} \right)D = I\) and \(D\left( {ABC} \right) = I\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free