Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

10: With \({\mathop{\rm u}\nolimits} = \left( { - 2,3,1} \right)\) and A as in Exercise 8, determine if u is in Nul A.a

Short Answer

Expert verified

\({\mathop{\rm u}\nolimits} \)is in Nul A.

Step by step solution

01

State the value of A as in Exercise 8

Matrix A in the form \(\left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _2}}&{{{\mathop{\rm v}\nolimits} _3}}\end{array}} \right]\), as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 2}&0\\0&2&{ - 6}\\6&3&3\end{array}} \right]\)

02

Determine whether p is in Nul A

The null spaceof matrix A is the set Nul Aof all solutions of the homogeneous equation\(Ax = 0\).

Calculate \(A{\mathop{\rm u}\nolimits} \), as shown below:

\(\begin{array}{c}A{\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 2}&0\\0&2&{ - 6}\\6&3&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 2}\\3\\1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{6 - 6 + 0}\\{0 + 6 - 6}\\{ - 12 + 9 + 3}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right]\end{array}\)

Since\[A{\mathop{\rm u}\nolimits} = 0\], \({\mathop{\rm u}\nolimits} \) is in Nul A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Generalize the idea of Exercise 21(a) [not 21(b)] by constructing a \(5 \times 5\) matrix \(M = \left[ {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right]\) such that \({M^2} = I\). Make C a nonzero \(2 \times 3\) matrix. Show that your construction works.

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

[M] Suppose memory or size restrictions prevent your matrix program from working with matrices having more than 32 rows and 32 columns, and suppose some project involves \(50 \times 50\) matrices A and B. Describe the commands or operations of your program that accomplish the following tasks.

a. Compute \(A + B\)

b. Compute \(AB\)

c. Solve \(Ax = b\) for some vector b in \({\mathbb{R}^{50}}\), assuming that \(A\) can be partitioned into a \(2 \times 2\) block matrix \(\left[ {{A_{ij}}} \right]\), with \({A_{11}}\) an invertible \(20 \times 20\) matrix, \({A_{22}}\) an invertible \(30 \times 30\) matrix, and \({A_{12}}\) a zero matrix. [Hint: Describe appropriate smaller systems to solve, without using any matrix inverse.]

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free