Chapter 2: Q27Q (page 93)
Show that if ABis invertible, so is A. You cannot use Theorem 6(b), because you cannot assumethat Aand Bare invertible. (Hint:There is a matrix Wsuch that \(ABW = I\). Why?)
Short Answer
BothABand A are invertible.
Chapter 2: Q27Q (page 93)
Show that if ABis invertible, so is A. You cannot use Theorem 6(b), because you cannot assumethat Aand Bare invertible. (Hint:There is a matrix Wsuch that \(ABW = I\). Why?)
BothABand A are invertible.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.
Compute \(A - {\bf{5}}{I_{\bf{3}}}\) and \(\left( {{\bf{5}}{I_{\bf{3}}}} \right)A\)
\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{9}}&{ - {\bf{1}}}&{\bf{3}}\\{ - {\bf{8}}}&{\bf{7}}&{ - {\bf{6}}}\\{ - {\bf{4}}}&{\bf{1}}&{\bf{8}}\end{aligned}} \right)\)
In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.
27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).
Prove the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).
Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?
Let \(A = \left[ {\begin{array}{*{20}{c}}B&{\bf{0}}\\{\bf{0}}&C\end{array}} \right]\), where \(B\) and \(C\) are square. Show that \(A\)is invertible if an only if both \(B\) and \(C\) are invertible.
What do you think about this solution?
We value your feedback to improve our textbook solutions.