Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).

Short Answer

Expert verified

\({{\mathop{\rm u}\nolimits} ^T}v = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} = - 2a + 3b - 4c\), \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{ - 2b}&{ - 2c}\\{3a}&{3b}&{3c}\\{ - 4a}&{ - 4b}&{ - 4c}\end{aligned}} \right)\), and \(v{{\mathop{\rm u}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{3a}&{ - 4a}\\{ - 2b}&{3b}&{ - 4b}\\{ - 2c}&{3c}&{ - 4c}\end{aligned}} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determine the product \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \)

It is known that the transpose of Ais denoted by \({A^T}\).

The matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, commonly represented by a real number and written without the matrix brackets.

\(\begin{aligned}{c}{{\mathop{\rm u}\nolimits} ^T}v = \left( {\begin{aligned}{*{20}{c}}{ - 2}&3&{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\\ = - 2a + 3b - 4c\\{{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a&b&c\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\\ = - 2a + 3b - 4c\end{aligned}\)

02

Determine the product \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\)

\(\begin{aligned}{c}{{\mathop{\rm uv}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}a&b&c\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{ - 2b}&{ - 2c}\\{3a}&{3b}&{3c}\\{ - 4a}&{ - 4b}&{ - 4c}\end{aligned}} \right)\\v{{\mathop{\rm u}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}&3&{ - 4}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{3a}&{ - 4a}\\{ - 2b}&{3b}&{ - 4b}\\{ - 2c}&{3c}&{ - 4c}\end{aligned}} \right)\end{aligned}\)

Thus, the products is \({{\mathop{\rm u}\nolimits} ^T}v = {{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} = - 2a + 3b - 4c\), \({\mathop{\rm u}\nolimits} {{\mathop{\rm v}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{ - 2b}&{ - 2c}\\{3a}&{3b}&{3c}\\{ - 4a}&{ - 4b}&{ - 4c}\end{aligned}} \right)\), and \(v{{\mathop{\rm u}\nolimits} ^T} = \left( {\begin{aligned}{*{20}{c}}{ - 2a}&{3a}&{ - 4a}\\{ - 2b}&{3b}&{ - 4b}\\{ - 2c}&{3c}&{ - 4c}\end{aligned}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

2. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{7}}&{\bf{4}}\end{aligned}} \right)\).

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

In Exercise 9 mark each statement True or False. Justify each answer.

9. a. In order for a matrix B to be the inverse of A, both equations \(AB = I\) and \(BA = I\) must be true.

b. If A and B are \(n \times n\) and invertible, then \({A^{ - {\bf{1}}}}{B^{ - {\bf{1}}}}\) is the inverse of \(AB\).

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ab - cd \ne {\bf{0}}\), then A is invertible.

d. If A is an invertible \(n \times n\) matrix, then the equation \(Ax = b\) is consistent for each b in \({\mathbb{R}^{\bf{n}}}\).

e. Each elementary matrix is invertible.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free