Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3-8, find the \({\bf{3}} \times {\bf{3}}\) matrices that produce the described composite 2D transformations, using homogenous coordinates.

Rotate points \({\bf{30}}^\circ \) and then reflect through the x-axis.

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&0\\{ - \frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}&0\\0&0&1\end{array}} \right]\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the matrix for rotation

The rotation matrix can be written as

\(\left[ {\begin{array}{*{20}{c}}{\cos 30^\circ }&{ - \sin 30^\circ }&0\\{\sin 30^\circ }&{\cos 30^\circ }&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&0\\{\frac{1}{2}}&{\frac{{\sqrt 3 }}{2}}&0\\0&0&1\end{array}} \right]\).

02

Find the matrix for reflection

The matrix for reflection is

\(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&{ - 1}&0\\0&0&1\end{array}} \right]\).

03

Find the combined matrix of transformation

The combined matrix for transformation can be expressed as

\(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&{ - 1}&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&0\\{\frac{1}{2}}&{\frac{{\sqrt 3 }}{2}}&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&0\\{ - \frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}&0\\0&0&1\end{array}} \right]\).

So, the transformed matrix is \(\left[ {\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&0\\{ - \frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}&0\\0&0&1\end{array}} \right]\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free